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Joint Entropy-Constrained Multiterminal
Quantization

J. Cardinal and G. Van Assche

Abstract

As a rate-distortion extension to the Slepian-Wolf problem, we study the entropy-constrained design of a multiterminal quantizer for
coding two correlated continuous sources. The designed quantizer can then be combined with a lossless encoder operating close to the Slepian-
Wolf bound. Two design methods are presented, both optimizing a Lagrangian cost measure involving the distortion and the information
rate. The first method is a simple descent algorithm, while the second is based on index reuse of a high-resolution quantizer. Numerical
results are displayed. The soundness of the index reuse method is shown, while confirming the advantages of entropy constraints over simple
entropy limitations.

I. Introduction

We study the design of a multiterminal quantizer (αX , αY , β) for coding of two correlated sources X and Y taking
values in R

k. We assume that the two sources are encoded separately by the encoders αX and αY , and that the pair
of output indices is jointly decoded by the decoder β. The reproduction values are denoted by X̂ and Ŷ , and both
corresponding distortions must be minimized. This problem is a rate-distortion generalization of the Slepian-Wolf (SW)
distributed coding problem [1] and has to be distinguished from that of estimating a single source given two noisy
observations X and Y of it. Following [2], we will refer to this latter problem as remote coding and to our problem as
direct coding.

We further assume that the quantization step is followed by an ideal SW entropy coder (γX , γY , γ−1), as illustrated
on Fig. 1. This assumption does make sense since recent works such as [3] propose practical coders operating close to
the SW bounds. We propose to design a quantizer pair jointly minimizing the two distortions with constraints on the
two bitrates predicted by the SW theorem.

Zamir and Berger [2] show that at the high-resolution limit there is no rate loss compared to the joint encoding of the
two sources and that the optimal high-resolution performance can be achieved by the composition of “blind” separate
quantizers with a SW coder. They suggest the use of lattice quantizers for the first stage. These results, however, only
hold at high rates, and it can also be shown that in general there is a loss due to the separation of the encoders. We
believe that this loss can be minimized by taking into account the cascaded SW coder during the quantizer design, just
as entropy-constrained quantizers [4] perform better than lattice quantizers.

Fleming and Effros [5] recently proposed a unifying framework in which the fixed-rate version of the direct coding
problem is treated. Pradhan and Ramchandran [6] propose a solution for the remote coding problem using linear codes.
An early approach of fixed-rate quantizer design for remote coding can be found in a paper by Flynn and Gray [7].

II. Optimality Conditions

We use the notations I = αX(X), J = αY (Y ). The achievable rates for SW coding of these two indices satisfy:

RX ≥ H(I | J) (1)

RY ≥ H(J | I) (2)

RX + RY ≥ H(I, J). (3)

Using discrete Lagrangian optimization, we define the cost measure to be minimized by the triple (αX , αY , β):

J(αX , αY , β) = DX + µDY + λXRX + λY RY , (4)
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Fig. 1. Block diagram of the proposed multiterminal quantizer
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Fig. 2. The Slepian-Wolf achievable rate region and two possible choices for the definition of the entropy constraint: © corresponds to
Eqn. (7-8) and 2 to Eqn. (9-10)

where DX and DY are the average distortions, RX and RY the average rates, and µ, λX and λY are positive Lagrangian
multipliers.

We use the notation β(i, j) = (βX(i, j), βY (i, j)). The distortions are written

DX = E[d(X, βX(I, J))] (5)

DY = E[d(Y, βY (I, J))] (6)

for a suitable distortion measure d. In the expression for J the number of rate constraints is two, while three inequalities
define the achievable rate pairs. Hence one degree of freedom is left for the design of the SW coder and we have to
choose an arbitrary operation point on the optimal rate pairs curve. In the following, we choose the simple definitions

RX = H(I) (7)

RY = H(J | I), (8)

but nothing prevents the use of other values such as

RX =
H(I | J) + H(I)

2
(9)

RY =
H(J | I) + H(J)

2
. (10)

One can simply design an encoder with the roles of X and Y reversed (i.e., so that RX = H(I | J) and RY = H(J))
and is then able to achieve any convex combination of the rates (7-8) and the reversed ones by time multiplexing.

Let us first consider the optimal encoder for X . The cost measure to minimize for αX is derived from J by writing
the distortion sum as a conditional mean and isolating the term depending on the value I = i in RX :

αX(x) = arg min
i

E [d(x, βX (i, J)) + µd(Y, βY (i, J)) | X = x] − λX log P [I = i] − λY log P [J | I = i] , (11)

for all x ∈ R
k, where i is taken in the set IX of indices for αX .

The optimal encoder for Y is similar, excepted that RY is defined differently:

αY (y) = argmin
j

E [d(X, βX (I, j)) + µd(y, βY (I, j)) − λY log P [J = j | I ] | Y = y] , (12)

for all y ∈ R
k, where j is taken in the set IY of indices for αY .

The optimal decoder for the mean squared error is the classical Bayes estimator:

β(i, j) = E [X, Y | I = i ∧ J = j] , (13)
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for all (i, j) ∈ IX × IY .
A simple descent algorithm for the design of (αX , αY , β) is as follows:

1. define αX as in Eqn. (11) while holding αY and the probabilities P [I = i] fixed,
2. define αY as in Eqn. (12) while holding αX and the probabilities P [J = j | I = i] fixed,
3. define β as in Eqn. (13) while holding αX and αY fixed,
4. update the probabilities P [I = i] and P [J = j | I = i] while holding αX and αY fixed.
The cost J(αX , αY , β) decreases at each iteration and is bounded, hence the algorithm converges to a local optimum.

The optimal design equations are straightforwardly derived but their implementation is not simple. The estimation of
the conditional distribution of one source given another using a training set, in particular, can lead to estimation errors
and instability in the iterative process. Moreover, if we restrict the scheme to scalar quantizers (k = 1), we do not have
any simple formula for the bounds of the quantization cells.

In [5], the probability density estimation problem is solved by using piecewise constant approximations of the prob-
ability distributions. This essentially reduces to operating on quantized versions of the sources. We propose a related,
but simpler, approach. It is also inspired from the quantization based on index reuse proposed in [7].

III. Alternative Design

We define αX as the composition of a primary quantizer QX and an index assignment (IA) function δX :

δX : KX → IX , (14)

where KX is the index set for QX . Similarly, we set αY = δY ◦QY . Note that an optimal quantizer α. can be approximated
with arbitrary precision by this composition for a primary quantizer Q. with sufficiently high resolution. This approach
has already been applied by Flynn and Gray [7] to the remote coding problem with fixed-rate quantization.

In the following, merging two quantization cells i and i′ in IX consists in creating a new IA function δ′X identical to
δX excepted that δ′X(i) = δ′X(i′) = δX(i). Similarly, we can merge two quantization cells j, j ′ ∈ IY .

We design the IA function by iteratively merging quantization cells until the current rate is equal to the target rate.
The initial IA function is the identity. We denote by ∆(i,i′)(.) (resp. ∆(j,j′)(.)) the variation of the argument when i

and i′ (resp. j and j′) are merged in δX (resp. δY ).
We define the following marginal returns

ΛX(i, i′) =
−∆(i,i′)(DX) − µ∆(i,i′)(DY )

∆(i,i′)(RX)
(15)

ΛY (j, j′) =
−∆(j,j′)(DX) − µ∆(j,j′)(DY )

λ∆(j,j′)(RY )
, (16)

where µ and λ are positive Lagrangian multipliers.
We can find a good sequence of mergings by choosing at each step the pair of indices minimizing the corresponding

marginal return. It amounts to choosing the merging that minimizes the distortion increase per bit. A geometrical
illustration is given in Fig. 3.

This approach is advantageous for several reasons. First, it can be implemented easily with an empirical knowledge
of the input sources, i.e. a training set. Second, it requires less Lagrangian multipliers than in the previous approach.
Finally, the method directly gives the whole rate-distortion curve while the previous algorithm was defined for a specific
target rate. The drawback of the technique is that it gives no guarantee of optimality.

As noted in [7], the marginal return method allows many simplifications in the case of mean squared error. First, the
centroids can be easily recomputed when cells i and i′ are merged (and similarly for j and j ′).

β′

(i,i′)(i, j) =
P [I = i ∧ J = j]β(i, j) + P [I = i′ ∧ J = j]β(i′, j)

P [I = i ∧ J = j] + P [I = i′ ∧ J = j]
(17)

Second, the increase in distortion is a simple function of the centroids and masses of probabilities before merging.

∆(i,i′)(DX ) =
∑

j

P [I = i ∧ J = j]P [I = i′ ∧ J = j]

P [I = i ∧ J = j] + P [I = i′ ∧ J = j]
(βX (i, j) − βX(i′, j))2 (18)

Third, the decrease in rate can also be calculated quite simply. For this case, merging i and i′ must be distinguished
from merging j and j′.

∆(i,i′)(RX ) = f(P [I = i] + P [I = i′]) − f(P [I = i]) − f(P [I = i′]) with f(x) = x log2 x (19)

∆(j,j′)(RY ) =
∑

i

f(P [I = i ∧ J = j] + P [I = i ∧ J = j ′]) − f(P [I = i ∧ J = j]) − f(P [I = i ∧ J = j ′]). (20)

Finally, two cells merged imply to recompute only the marginal returns for which one of the two merged cells indexes is
involved.
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Fig. 3. Computation of the marginal return for a merging in δX
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Fig. 4. The rate-distortion curves obtained with the descent method

IV. Experiments

In these experiments, we defined X and Y as scalar Gaussian sources (k = 1) with unit variance and correlation factor
ρ = 0.9. The probability density function is thus

fρ(x, y) =
e
−

1
2

x
2
−2ρxy+y

2

1−ρ2

2π
√

1 − ρ2
. (21)

We first implemented the descent algorithm of Section II using numerical integration. We chose to train the encoder
αY and the decoder β using Eqn. (12) with αX defined as a uniform quantizer.

The choice of numerical integration results from the need to evaluate conditional probabilities, for which training sets
are not well suited. All quantities based on (21) such as probability mass, average and distortion can be symbolically
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integrated in one dimension and expressed in terms of error functions. However, the second dimension must be integrated
numerically, and we used Romberg’s algorithm [8].

The uniform encoder chosen for αX is a uniform quantizer with interval length 0.05, corresponding to a rate of almost
6.37 bits. We neglected areas such that |x| > 6 or |y| > 6, for which the mass of probability is insignificant. The
encoder αY is initialized with an encoder identical to αX . In some cases, we initialized αY with a uniform quantizer
with interval length 0.2 to allow quicker convergence – see Fig. 4. Eqn. (12) is evaluated for y varying in discrete steps.
The difference between successive values is chosen to be significantly smaller than the length of the smallest interval.
When two successive y result in two different minima j, a bisection is performed in order to find the interval bound
with increased accuracy. The resulting rate-distortion pairs are show in Fig. 4, for which we fixed µ = 1, RX ≈ 6.37
and spanned a wide range of achievable rates RY . Non entropy-constrained optimization results are also displayed in
the same figure, as they turned out to be less satisfactory.

We also implemented the alternative method. Since all the necessary routines were already created, we also used
numerical integration to evaluate it. Furthermore, this allows us to compare more objectively with the descent algorithm.
Note, however, that the alternative method could be simply implemented with training sets as no conditional probability
needs to be evaluated during the iterations.

The encoder chosen for αX is the same as above. For αY , we started with a uniform encoder with thinner intervals.
The chosen interval length is 0.01, thus 5 times smaller than for αX . This makes the work of the merging algorithm
sufficiently fine-grained while remaining tractable on a PC. Moreover, if training sets were used, it would require a large
but yet reasonable number of training samples. The results are displayed in Fig. 5.

While the descent algorithm requires us to vary λY to get several rate-distortion pairs, a single run of the merging
method gives a curve of rate-distortion pairs. It is interesting to note that the merging algorithm seems to work in
stages. The marginal return stays about constant for many mergings in a row, then jumps to a higher level, then stays
again about constant, and so on (see Fig. 6). For rate-distortion pairs taken as the marginal return jumps from one step
to another, the method is really competitive to the more computationally intensive descent algorithm. Also, it is clear
that the marginal return method works best when entropy constraints are taken into account.

V. Conclusion

We described two novel multiterminal quantizer design algorithms assuming the existence of an optimal SW coder at
the quantizer output. The soundness and efficiency of these algorithms have been shown experimentally on correlated
scalar Gaussian sources.

Future work on this topic could include the combination of the quantizer with a practical SW coder, and the inclusion
of the SW coder update in the design loop. The merging method can also be applied to vector quantizers for real sources,
such as quantization of LPC coefficients in speech coding or wavelet coefficients in correlated image sources. Finally,
one can easily generalize the technique to more than two correlated sources.
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