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Abstract — Motivated by recent advances in quan-
tum cryptography with continuous variables, we study the
problem of extracting a shared digital secret key from two
correlated real values. Alice has access to a real value XA,
and Bob to another value XB such that the mutual infor-
mation I(XA; XB) is nonzero. They wish to convert their
values into a shared secret digital information while leak-
ing as little information as possible to Eve. We show that
the problem can be decomposed in two subproblems that
are known in other contexts. The first is the design of a
quantizer that maximizes a mutual information criterion,
the second is known as lossless coding with side informa-
tion.

I. INTRODUCTION

A Key distribution with continuous quantum
states

The work presented in this paper is motivated by some recent
quantum key distribution (QKD) protocols that make use of
continuous quantum states instead of discrete ones.

Quantum key distribution (also called quantum cryptogra-
phy) allows two parties, usually called Alice and Bob, to share
a secret key that can be used for encrypting messages using a
classical cipher, e.g., the one-time pad [25]. The main inter-
est of such a key distribution scheme is that eavesdropping is
detectable, as the laws of quantum mechanics imply that mea-
suring a quantum state generally disturbs it. Actually, quantum
cryptography uses two channels: a quantum channel (e.g., a
fiber in which single photons are sent) and a classical public
authenticated channel.

To share a secret key, a few steps must be performed. First,
quantum states are sent from Alice to Bob, or vice-versa [13],
on the quantum channel. These states carry some information
that Bob will determine the best he can. This process gives the
two parties correlated random variables, XA and XB . Then,
Alice and Bob compare a sample of the transmitted informa-
tion over the public channel. They measure some appropriate
disturbance metric, from which they can determine an upper
bound on the amount of information a possible eavesdropper
was able to get, thanks to the laws of quantum mechanics. Fi-
nally, they extract a common secret key S out of XA and XB .

The last step of QKD, namely the construction of a common
secret key out of correlated random variables is a non-trivial
operation, about which we now give some details.

In many QKD schemes, such as BB84 [2], XA and XB are
simply balanced binary random variables, connected by some
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Figure 1: Block diagram of the proposed system

error probability ε = Pr[XA 6= XB ]. In this case, the se-
cret key distillation usually involves two steps. First, Alice
sends1 Bob some correction information f(XA) over the pub-
lic authenticated channel in such a way that he can recover XA

knowing XB . Since f(XA) is sent over a public channel, it is
considered known to an eavesdropper. Therefore, the second
step of key distillation consists in applying a privacy ampli-
fication protocol [4, 19, 3], where the tapped information is
wiped out at the cost of a reduction in the key length.

Privacy amplification (PA) is not covered in this paper,
since the currently developed protocols can readily be used.
It is however relevant to our problem, as the reduction in key
length during PA is roughly equal to the number of bits known
to an eavesdropper [3, 20], both from tapping the quantum
channel and from listening to the public channel. It should
thus now appear clearly that the reconciliation information
f(XA) should not give more information than necessary on
XA, otherwise resulting in a penalty in the key length. Ideally,
only H(XA|XB) bits should be given, resulting in a secret key
length of H(XA)−H(XA|XB) = I(XA; XB) bits, assuming
an untapped perfect quantum channel.

Unlike binary QKD protocols, some recent protocols [8,
12, 13] use a continuous modulation of quantum states, thus
producing continuous random variables XA, XB ∈ R

d. The
extraction of a common secret key works like for their binary
counterparts, although the reconciliation step will extract com-
mon discrete variables out of continuous ones. We thus wish
Alice and Bob to be able to agree on a discrete key from XA

and XB while leaking as little information as possible on the
public channel.

B Proposed Scheme

We propose a three-phase approach (excluding privacy ampli-
fication) to the problem of constructing a shared secret key

1Actually, this may involve an interactive correction rather than a one-way
communication, but this aspect will be detailed later in Sec. III.



K. In a first phase, Alice maps her value XA to an integer
K = α(XA) using a predefined function α. Then she sends a
correction information γ(K) on the authenticated channel to
Bob. Finally, using this information and his continuous value
XB , Bob is able to determine K = β(γ(K), XB) with high
probability. In the source coding terminology, α is a quantizer
[11], and the pair (γ, β) is a lossless code with side informa-
tion at the receiver [27, 31]. We have therefore split our prob-
lem in two main parts: 1) design a good quantizer α, 2) design
a good lossless code (γ, β).

We set XA, XB ∈ R
d, K ∈ K ⊆ N. The functions in-

volved are

α : R
d → K (1)

γ : K → {0, 1}∗ (2)

β : {0, 1}∗ × R
d → K. (3)

A summary of the scheme is provided in Fig. 1. The operations
α and γ are made on Alice’s side, while the decoding β takes
place on Bob’s side.

We define the correction rate R as the average length of the
correction message that Alice sends to Bob:

R = E[|γ(K)|]. (4)

A lower bound to the correction rate is the lowest achievable
rate for a lossless code with side information, which is known
[27] to be equal to the conditional entropy of the message with
respect to the side information:

R ≥ H(K | XB). (5)

The amount of information that is shared by Alice and Bob
is therefore equal to the entropy H(K) of the key generated
by Alice, to which we subtract the number of correction bits
R. From Eqn. (5), an upper bound to this quantity is H(K)−
H(K | XB) = I(K; XB). We call H(K | XB) the ideal
correction rate.

II. QUANTIZATION

We have seen that I(K; XB) is an upper bound on the
amount of information shared by Alice and Bob. Actually,
when the granularity of the quantizer α tends to infinity, we
have

I(K; XB) → I(XA; XB) (6)

H(K | XB) → +∞. (7)

The first limit is well known [9], while the second comes from
the fact that the discrete entropy of a continuous variable is
infinite. Hence the price to pay to get I(K; XB) closer to the
ultimate upper bound I(XA; XB) is an increase in the average
size H(K | XB) of the correction message assuming an ideal
lossless coder. Our goal in designing the quantizer α is to
maximize I(K; XB) while keeping H(K | XB) bounded.

We first mention several previous studies related to this
problem. In Sec. B, we propose a general algorithm. Next, we
discuss extensions and practical implementation of the general
algorithm.

A Previous works

Traditional quantization aims at minimizing a distortion mea-
sure defined in the signal space, such as the mean squared error
[11]. There is however already some literature on quantiza-
tion for maximal mutual information. This idea has actually
emerged recently in rather different contexts. In a recent con-
tribution from Wu et al. [32], a maximal mutual information
quantizer is utilized to classify context vectors in data com-
pression applications. They wish to predict the distribution of
a variable X given a large context Y . They describe how to
map Y optimally onto the set {1, 2, . . . , N} with a quantizer
α so that the conditional entropy H(X | α(Y )) is minimal.
This is strictly equivalent to maximizing the mutual informa-
tion I(α(Y ); X). They exhibit an exact polynomial algorithm
for the binary case X ∈ {0, 1} and mention the Lloyd ap-
proach presented next. In the so-called information bottleneck
method from Tishby, Pereira and Bialek [29], a stochastic map
p(k | xA) plays the role of the quantizer α, and maximizes
I(K; XB) subject to a constraint on the value of I(K; XA).
Tishby et al. describe an algorithm for computing these maps
based on classical developments in rate-distortion theory and
similar to the Blahut-Arimoto algorithm [5]. In a subsequent
development of the method [28], they describe a heuristic ag-
glomerative algorithm for designing “hard clusters”, i.e., a de-
terministic quantizer, optimizing the same criteria. Note that
in that case the constraint on I(K; XA) reduces to a constraint
on H(K), since H(K | XA) = 0. The authors argue that this
method provides a practical solution to numerous problems in
prediction, neural coding and signal processing. Let us also
notice several recent contributions in neural information pro-
cessing based on the same ideas, such as [26].

B A general algorithm

We propose a method that follows the developments provided
in [32] and inspired from the Lloyd optimality conditions for
vector quantizers [11]. We first assume that K belongs to the
set K = {1, 2, . . . , N}. Then clearly H(K | XB) is bounded
by log N . We use the notation 〈f, g〉 =

∫

f(x)g(x)dx, and
h(.) for the differential entropy. Then α is a solution of

arg max
α

I(K; XB)

=arg max
α

h(XB)− h(XB | K)

=arg min
α

h(XB | K)

=arg min
α

h(XB | K)− h(XB | XA)

=arg min
α
−〈PXA

, 〈PXB |XA
, log PXB |K〉〉

+ 〈PXA
, 〈PXB |XA

, log PXB |XA
〉〉

=arg min
α
〈PXA

, 〈PXB |XA
, log

PXB |XA

PXB |K
〉〉

=arg min
α

EXA
[D(PXB |XA

‖ PXB |K)].

(8)

The function D(p ‖ q) is called the Kullback-Leibler diver-
gence or the relative entropy of p with respect to q [9].

From the previous developments, we see that a realization
xA of the continuous value XA on Alice’s side should be



mapped by α to the key α(xA) such that

α(xA) = arg
N

min
k=1

D(PXB |XA=xA
‖ PXB |K=k), (9)

that is, to the key k whose associated distribution PXB |K=k

is the nearest neighbor of PXB |XA=xA
in terms of the K-L

divergence. This is equivalent to the first Lloyd’s optimality
condition in classical vector quantization. The nearest neigh-
bor condition in Eqn. (9), however, is tail-biting: the map-
ping α is defined through the distributions PXB |K , which in
turn depend on α. This observation suggests an algorithm
in which the mapping and the conditional distributions are
updated alternately. Let us define {fk}Nk=1 the codebook of
probability distributions for XB and the quantization cells
Qk = {xA | α(xA) = k}, i.e., the subsets of R

d whose
elements are mapped to the same quantization index k. The
quantizer α is completely defined by the partition {Qk}Nk=1.
Algorithm 1 is applied, starting with any initial quantizer α. A
suitable tie-breaking rule is used in the update step forQk.

Algorithm 1 A general alternate optimization algorithm
repeat

for k = 1, 2, . . . , N do
fk ← E[PXB |XA

| XA ∈ Qk]
end for
for k = 1, 2, . . . , N do
Qk ← {xA | ∀j 6= k D(PXB |XA=xA

‖ fj) >
D(PXB |XA=xA

‖ fk)}
end for

until variation of EXA
[D(PXB |XA

‖ PXB |K)] becomes
negligible

While this algorithm is an adaptation of the well-known
generalized Lloyd algorithm, we can consider that the agglom-
erative information bottleneck technique [28] is an adaptation
of the Pairwise Nearest Neighbor algorithm [10] for vector
quantizer design.

C Practical algorithm

The previous description of the local optimization algorithm
is rather general and not directly implementable. First, prob-
ability distributions are generally estimated up to a certain
precision. Then, the design of the improved quantizer is not
straightforward either. It can be carried out using a training
set T of instances of XA and applying the nearest neighbor
rule (9) for each element of the set. The algorithm becomes as
described in Algorithm 2.

One has to take care of the following points. First, for eval-
uating the K-L divergence, it is probably simpler to quantize
XB as well (e.g., with a high resolution quantizer or as sug-
gested in Sec. D), so that fk becomes a vector and the in-
tegral reduces to a discrete sum. Then, the estimations of
PXB |XA=xA

and PXB |K=k can be either numerical or ana-
lytical, depending on the knowledge we have about the joint
behavior of XA and XB . It may occur, in particular, that only
empirical data is available, for instance in the form of joint
training sets. This can lead to serious precision problems when

Algorithm 2 A practical alternate optimization algorithm
repeat

for k = 1, 2, . . . , N do
Tk ← {xA ∈ T | α(xA) = k}
fk ← (

∑

xA∈Tk
PXB |XA=xA

)/|Tk|
end for
for each xA ∈ T do

α(xA)← arg minN
k=1 D(PXB |XA=xA

‖ fk)
end for

until variation of
∑

xA∈T D(PXB |XA=xA
‖ fα(xA))/|T |

becomes negligible
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Figure 2: A cell Ck on the probability simplex for |XB | = 3

evaluating the K-L divergence. A good solution in that case
might be to model the distribution using simple assumptions.

D Properties

For simplicity, we temporarily assume in this subsection that
XB is a discrete random variable in the finite set XB .

Quantization cells Qk have no special structure. It is not
necessary, in particular, that values of XA that are close to
each other lead to similar distributions for XB . On the other
hand, there exist quantization cells Ck on the probability sim-
plex, the set of vectors of size |XB | with positive components
summing to one. These cells contain all probability mass
functions for XB corresponding to a given quantization in-
dex k: Ck = {PXB |XA=xA

| α(xA) = k}. An illustration
is given on Fig. 2. These cells are connected and bounded
by (|XB | − 2)-dimensional hyperplanes. We first show that
the optimal value of fk within a cell is the average probability
mass function in that cell. In other words, vector quantizers
minimizing the K-L divergence obey the centroid rule. In the
following, g(.) is the probability density function of the dis-
tribution P = (P1, P2, . . . , P|XB|) of XB within the cell Ck
and the expectation Ek[.] denotes the expected value within
that same cell. Hence Ek[P ] is the |XB |-dimensional vec-
tor (

∫

Ck

P1g(P )dP,
∫

Ck

P2g(P )dP, . . . ,
∫

Ck

P|XB |g(P )dP ).
Note that if XA is a discrete random variable, the probability
density function g(.) is actually a probability mass function.
The following discussion is without loss of generality.

We wish to show that fk = Ek[P ] is the solution of

min

∫

Ck

〈P, log
P

fk

〉g(P )dP (10)



subject to 〈1, fk〉 = 1. This is easily achieved by writing the
Lagrangian cost

J = λ〈1, fk〉+

∫

Ck

〈P, log
P

fk

〉g(P )dP. (11)

Taking the derivative for each component j leads to

δJ

δfk,j

= λ−
1

fk,j

∫

Ck

Pjg(P )dP = 0 (12)

by identification, we find λ = 1 and fk,j =
∫

Ck

Pjg(P )dP =

Ek[Pj ], hence fk = Ek[P ].
This centroid rule is important because it proves that the

alternate optimization algorithm converges: Each of the two
steps decreases the K-L divergence, and since this quantity
is always positive, the algorithm must converge to a quantizer
that is locally optimal with respect to both the nearest neighbor
and the centroid rule.

Let us now compute the exact average K-L divergence Dk

within the cell Ck:

Dk =

∫

Ck

〈P, log
P

fk

〉g(P )dP

=

∫

Ck

(〈P, log P 〉 − 〈P, log fk〉) g(P )dP

=−Ek[H(P )]− 〈Ek[P ], log fk〉

(13)

but since fk = Ek[P ] we obtain

Dk = H(Ek[P ])−Ek[H(P )]. (14)

When g(.) is actually a probability mass function, this expres-
sion is known as the generalized Jensen-Shannon divergence
[17]. We conclude that minimization of the average K-L di-
vergence or the average Jensen-Shannon divergence within a
cluster are similar problems.

E Quantization with ideal correction rate con-
straint

Instead of fixing K ∈ K = {1, 2, . . . , N}, we can simply
let K = N and solve the constrained problem of maximizing
I(K; XB) subject to H(K | XB) ≤ R∗ for a certain bound
R∗ on the ideal correction rate. Introducing a Lagrangian mul-
tiplier λ ∈ R

+, we seek

max
α

I(K; XB)− λH(K | XB). (15)

Applying previous developments in Eqn. (8), this problem re-
duces to

min
α

EXA
[D(PXB |XA

‖ PXB |K)]

+λH(K | XB),
(16)

from which we derive the following modified nearest neighbor
rule for α: for any xA, α(xA) is such that

α(xA) = arg
N

min
k=1

(

D(PXB |XA=xA
‖ PXB |K=k)

−λE[log P [K = k | XB] | XA = xA]) .

The Lagrangian multiplier λ controls the tradeoff between
the fraction of the maximal mutual information I(XA; XB)
that is actually shared and the ideal correction rate H(K |
XB) on the authenticated channel. When λ tends to 0, the
granularity of α becomes infinitely high and the behavior of
I(K; XB) and H(K | XB) are as in Eqn. (6–7). When
λ → +∞, both values tend to zero. Each intermediate value
corresponds to a constraint R∗ on the ideal correction rate.

We can plug these expressions in the previous algorithm
and derive a modified method that finds a locally optimal quan-
tizer satisfying the correction rate constraint. This modified
criterion requires a bigger computational effort than the previ-
ous one, for we have to evaluate not only PXB |XA=xA

for each
xA but also E[log P [K = k | XB ] | XA = xA] for each xA

and each k.

F Trivial case XB = XA

A trivial case arises when Alice and Bob share identical con-
tinuous values. The problem degenerates as follows:

argmax
α

I(K; XB)

= argmax
α

H(K)−H(K | XB)

= argmax
α

H(K)−H(K | XA)

= argmax
α

H(K),

(17)

which amounts to finding any quantizer with maximal entropy,
i.e., whose cells are equiprobable. Note that this is a property
of minimum mean squared error quantizers [11].

If we only bound the correction rate, the shared information
can be made arbitrarily close to the upper bound I(XA; XB),
since the correction rate is always zero.

G Gaussian modeling

Let us assume that the conditional distributions PXB |XA
are

Gaussian, or in some sense close to Gaussian. This might
be a useful assumption in the quantum cryptography applica-
tion. Then a reasonable approximation of the K-L divergence
D(PXB |XA=xA

‖ fk) that we wish to minimize can be ob-
tained by modeling fk by a Gaussian pdf f̃k with the same
mean and variance.

The error due to this approximation can be computed as
follows:

D(P ‖ fk) =〈P, log
P

fk

〉

=〈P, log
P

f̃k

f̃k

fk

〉

=D(P ‖ f̃k) + 〈P, log
f̃k

fk

〉.

(18)

The additional term 〈P, log f̃k

fk

〉, the “distance” between fk and
its approximation, averaged with respect to P , should be min-
imized. It can be computed to give an indication of the quality
of the approximation.



Let f1 and f2 be two Gaussian pdf with respective means µ1

and µ2 and standard deviations σ1 and σ2. It is straightforward
to show that

D(f1 ‖ f2) = ln
σ2

σ1
−

1

2
+

σ2
1 + (µ1 − µ2)

2

2σ2
2

nats. (19)

If XB |XA is multivariate Gaussian, a similar approxima-
tion of the K-L divergence can be obtained by modeling fk

as a multivariate Gaussian with estimated covariance matri-
ces. Simple formulas for the K-L divergence are still applica-
ble. Even finer approximations have been recently proposed
by Lin, Saito and Levine in [18], using higher order statistics.
All these ideas straightforwardly apply to our method. Prop-
erties of the Voronoi diagram induced by the K-L divergence
in a Gaussian parametric space are described in [21].

III. LOSSLESS CODING WITH SIDE INFORMATION

As the previous section described the design of the quan-
tizer, let us now discuss the design of the lossless code with
side information at the receiver. Alice wishes to send γ(K)
with a rate R as little as possible such that Bob is able to re-
cover K with a high probability.

A Definitions and choices

Symbols k and k′ are said to be confusable if ∃ xB such that
PK,XB

(k, xB) > 0 ∧ PK,XB
(k′, xB) > 0. If such k and k′

are associated with the same codeword, the decoder β will not
be able to tell which one is correct.

For many interesting cases, such as joint Gaussian vari-
ables, the joint probability function PK,XB

will in general al-
ways be strictly positive. All symbols are thus confusable.
This means that a non-zero probability of error at the decoder
side must be tolerated, allowing some symbols to have iden-
tical codewords, even if confusable. This otherwise makes γ
bijective, in which case the rate R ≥ H(K) is of course unac-
ceptably high, and which in the particular case of QKD com-
pletely discloses the key.

The probability of confusion is defined as

Pc = Pr [β(γ(K), XB) 6= K] , (20)

which is thus to be minimized together with the rate R, defined
in Eqn. (4).

The code γ can be either [1]:

• a restricted inputs (RI) code, where γ(k) is not a prefix
of γ(k′) whenever k and k′ are confusable, or

• an unrestricted inputs (UI) code, where γ(k) 6= γ(k′)
whenever k and k′ are confusable and γ(k) can never be
a prefix of γ(k′) (even if k and k′ are not confusable).

In general, the codes of consecutive inputs will be concate-
nated to make a binary stream. This means that, in addition
to outputting an incorrect k, the decoder β may as well desyn-
chronize if the code associated to a symbol k is a proper prefix
of the code of a distinct confusable symbol k′. This prob-
lem should thus be circumvented by using an UI code, making

the stream instantaneously decodable even without the side in-
formation. Confusion can still happen, but desynchronization
cannot.

Zhao and Effros [34] use partition trees to capture the re-
quirements on which key elements can have equal and/or pre-
fix codewords. In our case, using UI implies that the partition
tree is flat.

Also note that the partition tree must be converted into a
binary stream by using either Huffman or arithmetic coding
[34]. In the latter case, the definition of the code γ should be
understood for a block of key elements k1...m, and the correc-
tion rate to minimize is H(γ(K)).

B Previous works

We will now overview some constructions of code in previ-
ous research. They will be briefly discussed in the light of our
goal, which is to design an UI code with discrete side informa-
tion with minimum rate under a constraint on the probability
of confusion. Note that a discrete side information is usually
assumed, unlike XB in our case, but this aspect will be cov-
ered in Sec. D, allowing the reader to assume a discrete XB in
the current section.

We divide explicit constructions of codes in three main
families. First there are constructions for zero-error codes
[31, 33, 14, 15, 16, 34], some of which are based on graph
coloring, and their near-zero-error variants [34]. Then, some
are based on sending a syndrome of an error-correcting code
[22, 23, 24, 30]. Finally, in the context of QKD, a mention of
interactive codes [6, 7] will be made.

B.1 Zero-error codes

Zero-error codes are aimed at allowing the decoder to unam-
biguously determine the transmitted symbol without any error,
with the help of the side information, while minimizing the
rate of the transmission. These constructions make explicit
use of zero entries in the joint probability distribution.

With K ∈ K ⊆ N the set of key elements and XB ∈ XB

the side information known at Bob’s side, let us define:

• the characteristic bipartite graph G = (K ∪ XB , E),
where for k ∈ K and xB ∈ XB , {k, xB} ∈ E iff
PK,XB

(k, xB) > 0;

• the confusability graph GK = (K, E), where {k, k′} ∈
E iff k and k′ are confusable.

While Witsenhausen [31] relate zero-error codes to the
chromatic number of the confusability graph, Alon et al. [1]
show that the best coloring does not necessarily imply the best
rate. Koulgi et al. [15] show an exponential-time optimal
design algorithm for UI and RI codes based on confusability
graphs and mention a fast approximation algorithm to design
UI codes. A construction called MASC [34] produce optimal
RI codes, generalizing either Huffman-type or arithmetic-type
codes.

Further properties can be found in [33] where necessary
and/or sufficient conditions on codeword lengths for small side



information alphabet sizes are provided and in [16] on theoret-
ical properties of the achievable rate region using characteris-
tic bipartite graphs.

Clearly, our problem involves joint probabilities that have
no zero entries. Zero-error corrections thus cannot be used as
such and a possible modification is examined next.

B.2 Near-zero-error codes

Zero-error code constructions can be used to design near-zero-
error codes. This may be done by applying a zero-error con-
struction on a modified joint probability distribution, where
small entries are set to zero and the remaining entries are
renormalized.

This is done explicitly in [34]. First all the subsets of entries
in the joint probability distribution that satisfy the given con-
strain on probability of error are listed. Then, for each of these
subsets, a lossless MASC is designed with the modified joint
probability distribution as input. Finally, the encoder with the
minimum rate is selected.

Although this results in an optimal code for the required
maximum probability of confusion, such a construction is not
practical. Heuristics may be used to speed up the search, at the
cost of an increase in R and/or Pc.

B.3 Syndrome-based codes

A way for Alice to give Bob information about K = α(XA)
is to send him the syndrome of a linear error correcting
code γ(K) = HK, with K expressed in some vector space
GF (q)n and H the parity check matrix of the code. Upon
receiving sA = Hk for an outcome k of K, Bob looks for
the most probable k̃ conditionally on XB = xB such that
Hk̃ = sA.

Standard decoding techniques can be used as soon as choos-
ing the most probable symbol reduces to minimizing the Ham-
ming distance between Bob’s a priori (without HK) and a
posteriori (with HK) guesses. Suppose that Bob chooses
an a priori decoding function β0(xB) ∈ GF (q)n such that
PK,XB

(k, xB) decreases as a function of k iff dH(k, β0(xB))
increases. Call Bob’s syndrome sB = Hβ0(xB). Since
H(k − β0(xB)) = sA − sB , we look for the coset leader
a of the syndrome sA − sB , which we add to β0(xB), giving
β(sA, xB) = β0(xB) + a so that H(k − β(sA, xB)) = 0 and
the probability that β(sA, xB) = k is maximized.

This idea is implemented in the DISCUS framework [22,
23, 24]. However, the focus there is set on a rate-distortion
version of the problem, in which (lattice) quantization and
(trellis-based) side-information are combined. Still, good syn-
dromes may be of help in the scope of secret key construction,
allowing fast decoding procedures.

A mention should also be made to the rather theoretical
construction in [30], where a universal two-step determinis-
tic encoding is used. First, the input is divided into blocks
and each block is encoded using a different linear code. Then,
a syndrome of a class of linear error correcting code is ap-
pended. Provided that the rate of the code is inside the achiev-
able region, the probability of error tends exponentially to zero
as the block length goes to infinity.

B.4 Interactive error correction

Interactive protocols are often used for QKD purposes. Cas-
cade [6] for instance is a binary interactive error correction
(IEC) protocol. It works on a long binary string and requires
Alice and Bob to exchange parities of subsets of their bits.
When the parity of a subset differs, they know for sure that
they have an odd number of wrong bits in this subset, hence at
least one. They can perform a bisection and repeatedly ex-
change the parity of half the current subset until one bit is
isolated and corrected (flipped). Cascade keeps track of all
investigated subsets and takes advantage of this information:
When an error is isolated and corrected, it updates the parity
of all previously processed subsets to which the corrected bit
belongs. This may then imply that the parity of some updated
subset now differs between Alice and Bob, causing a new bi-
section to start, until the error is found and corrected, and so
on.

The protocol Winnow [7] is another binary IEC protocol
and works in a similar way. When a parity differs, however,
Alice and Bob exchange the syndrome of a Hamming code
instead of performing a bisection (notice the similarity with
Sec. B.3). It also includes a privacy amplification step inter-
leaved with the error correction, but this aspect will not be
discussed further here.

Let us briefly analyze the cost of IEC. Let A, B ∈ GF (2)n

be respectively Alice’s and Bob’s binary string of size n. Af-
ter running Cascade, Alice and Bob disclosed RA and RB for
some matrix R of size l × n. They thus communicated the
parities calculated over identical subsets of bit positions. The
matrix R and the number l of disclosed parities are not known
beforehand but are the result of the interactive protocol and
of the number and positions of the diverging parities encoun-
tered.

In the context of QKD, it is essential to minimize of the
number l of disclosed parities. For Cascade, l ≈ n(1+ξ)h(ε),
where ε = Pr[Ai 6= Bi] is the bit error rate, h(ε) = −ε log ε−
(1− ε) log(1− ε) and ξ is some small overhead factor ξ � 1.

Assuming that Alice’s bits A will be used as a key, let us
evaluate the amount of information on A that is disclosed to
an eavesdropper through RA and RB. Let us also assume that
Alice’s and Bob’s bits are balanced and are connected by a
symmetric probability of error: P [Ai = 0] = P [Ai = 1] =
P [Bi = 0] = P [Bi = 1] = 1

2 , P [Ai = 0 ∧ Bi = 1] =
P [Ai = 1 ∧ Bi = 0] = ε. In this case, the parities RA
give Eve l bits of information on A, but RB does not give
any extra information since it is merely a noisy version of RA.
Stated otherwise, A → RA → RB is a Markov chain, hence
I(RA, RB; A) − I(RA; A) = I(RB; A|RA) = 0 so that
I(RA, RB; A) ≤ l ≈ n(1 + ξ)h(ε) is not far away from the
ideal nh(ε).

However, in the more general case where Eve gathered
in E some information on A and B by some other means
(i.e., on the quantum channel in the scope of QKD), A|E →
RA|E → RB|E does not necessarily form a Markov chain.
Instead, I(RA, RB; A|E) must be explicitly evaluated or if
this is not possible, it must be upper bounded by the number
of bits disclosed by both parties as if they were independent,
I(RA, RB; A|E) ≤ 2l ≈ 2n(1 + ξ)h(ε), making the rate less



attractive than in the previous paragraph.
The interactivity offers overwhelmingly small probability

of errors at the end of the protocol. It allows the communicat-
ing parties to spot errors without spending too many resources
elsewhere. Even after an IEC was run, an interactive check
procedure can be conducted, which for instance requires Al-
ice and Bob to exchange the parity of random subsets of their
bits. Conditionally on the fact that these tests succeeded, the
residual probability of errors decreases exponentially with the
number of such exchanged parities.

The low residual probability of errors can be exploited by
considering an IEC as a complement to a non-interactive code.
First, a non-interactive code gives K to Bob with a small (but
not small enough) probability of error. Then, an IEC is used
to further reduce the probability of error down to a satisfactory
limit.

C Working with UI codes

Given an encoder γ, the decoder that minimizes the probabil-
ity of confusion simply returns the most probable symbol con-
ditionally on the side information, along with some suitable
tie-breaking rule:

β(φ, xB) = arg max
k∈γ−1(φ)

PK,XB
(k, xB), (21)

where φ ∈ {0, 1}∗ and γ−1(φ) = {k : γ(k) = φ}. With
such a decoder, the probability of confusion is simply the prob-
ability mass that the decoder cannot reach,

Pc = 1−

∫

dxB

∑

k : ∃φ k=β(φ,xB)

PK,XB
(k, xB). (22)

Since UI codes allow only different prefix-free or equal
codewords, we can without loss of generality define γ as the
composition of an index assignment (IA) function δ and of a
bijective code assignment function γ0:

δ : K → K, (23)

γ0 : K → {0, 1}∗, (24)

γ = γ0 ◦ δ. (25)

The IA function thus represents the partition of K into sub-
sets with equal codes, such as a flat partition tree [34] or as
a graph coloring [31]. The function γ0 can be for instance
Huffman or arithmetic coding.

For a given IA function δ, the decoder (21) becomes

β(δ)(γ0(i), xB) = arg max
k∈δ−1(i)

PK,XB
(k, xB), (26)

and by defining

P (δ)(i, xB) =







0 if δ−1(i) = ∅,

max
k∈δ−1(i)

PK,XB
(k, xB) otherwise, (27)

we get

P (δ)
c = 1−

∫

dxB

∑

i

P (δ)(i, xB). (28)

D Quantization of XB

We notice from Eqn. (26) that the only relevant information
extracted from XB is the symbol k of highest conditional
probability for each index i such that δ−1(i) 6= ∅. When δ
is the identity, K is transmitted losslessly without taking the
side information into account, making XB irrelevant to the de-
coder. On the other hand, if δ is a constant, the decoder has
no information on K except via XB . Since there is only one
set δ−1(i) = K, the only relevant information extracted by the
decoder is the symbol k of highest conditional probability for
each xB . More general cases lie between these two extreme
cases.

This enables us to quantize XB in a way that does not alter
the performance of the decoder. Instead of working with XB

as such, one can define the vector

π(δ)(xB) =
(

β(δ)(γ0(i), xB)
)

i : δ−1(i) 6=∅
, (29)

and consider β as a function of the received codewords and of
the quantized π(δ)(XB) without increasing Pc.

If δ is not known when quantizing XB , a procedure that
works for any choice of δ is to use the full relative order
of the conditional probability of the k’s. Define π(xB) =
(π1, π2, . . . , π|K|) with πl ∈ K and

(PK,XB
(πl, xB) > PK,XB

(πm, xB)

∨ PK,XB
(πl, xB) = PK,XB

(πm, xB) ∧ πl < πm)

⇔ l < m. (30)

We can thus replace the random variable XB by a discrete
variable π(XB), an effect that results directly from the discrete
nature of K. Note that this may not be efficient, as the size of
the resulting alphabet may grow as O(n!) if |K| ≤ n. How-
ever, this can be reduced in practice if one neglects the relative
order of key symbols that have low conditional probabilities,
or if one limits the density of the resulting cells in R

d. In the
sequel, XB ∈ XB will denote the quantized version, unless
stated otherwise.

E A simple agglomerative algorithm

We now present a simple heuristic algorithm to design UI
codes. The γ0 function is assumed to be arithmetic coding,
implying to minimize R = H(δ(K)).

We start with a bijective IA function δ(k) = k, hence giv-
ing Pc = 0 and R = H(K), and then merge some key sym-
bols so as to reduce the rate of γ at the cost of an increase in
Pc. Merging two indexes i1, i2 ∈ R(δ) consists in creating a
new IA function δ′ identical to δ except that it now returns i1
whenever i2 was returned:

δ′(k) =

{

i1 if k ∈ δ−1(i2),

δ(k) otherwise.
(31)

We thus get R(δ′) = R(δ) \ {i2} and δ′−1(i1) = δ−1(i1) ∪
δ−1(i2), so that the key elements that were assigned to either
index i1 or i2 are now assigned to the same codeword.



Upon merging i1 and i2, we have from Eqn. (27)
P (δ′)(i1, xB) = max{P (δ)(i1, xB), P (δ)(i2, xB)} and
P (δ′)(i2, xB) = 0. The increase in probability of confusion
is thus

∆Pc =
∑

xB

min{P (δ)(i1, xB), P (δ)(i2, xB)}, (32)

and the decrease in rate

∆R = f(Pδ(K)(i1), Pδ(K)(i2)), (33)

with f(p1, p2) = −(p1 + p2) log(p1 + p2) + p1 log p1 +
p2 log p2.

At each step, we choose the pair (i1, i2) such that the ratio
λ(i1, i2) = −∆R/∆Pc is maximized and merge i1 and i2,
until no more merging is possible or if the maximum tolerated
probability of confusion has been reached.

A table in memory can hold P (δ), which is updated after
each merge. No more than |K| − 1 merges can occur. The
evaluation of λ takes |XB | additions for each of the O(|K|2)
index pairs, and the update of P (δ) takes |XB | arithmetic op-
erations. Thus the algorithm takes O(|K|3|XB |).

Although it does not necessarily give the optimal solution,
this algorithm has the advantage of giving many possible codes
with many associated (R, Pc) pairs in polynomial time.

IV. CONCLUSIONS

We presented a new secret key construction scheme and
motivated it as an essential tool for some recent protocols of
quantum key distribution. This problem was shown to di-
vide into two other subproblems that are used in other con-
texts. First, we showed how to quantize a continuous secret
key source in order to maximize an information-theoretic cri-
terion. Then, we made a survey of existing codes with side
information and listed the required features of such codes for
the scope of our problem. We showed how unrestricted in-
put codes can be used in this context and proposed a simple
heuristic algorithm to construct such codes.

We believe that showing this problem to the information
theory community may raise interest and that it will lead to
new problems and methods. In particular, both parts of our
key construction scheme need further separate developments.

V. *
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