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Quantum continuous variables1 are being explored2–14 as an
alternative means to implement quantum key distribution,
which is usually based on single photon counting15. The former
approach is potentially advantageous because it should enable
higher key distribution rates. Here we propose and experimen-
tally demonstrate a quantum key distribution protocol based on
the transmission of gaussian-modulated coherent states (consist-
ing of laser pulses containing a few hundred photons) and shot-
noise-limited homodyne detection; squeezed or entangled beams
are not required13. Complete secret key extraction is achieved
using a reverse reconciliation14 technique followed by privacy
amplification. The reverse reconciliation technique is in prin-
ciple secure for any value of the line transmission, against
gaussian individual attacks based on entanglement and quantum
memories. Our table-top experiment yields a net key trans-
mission rate of about 1.7 megabits per second for a loss-free
line, and 75 kilobits per second for a line with losses of 3.1 dB. We
anticipate that the scheme should remain effective for lines with
higher losses, particularly because the present limitations are
essentially technical, so that significant margin for improvement
is available on both the hardware and software.

Much interest has arisen recently in using the electromagnetic
field amplitudes to obtain possibly more efficient quantum con-
tinuous variable (QCV) alternatives2–14 to the usual photon-count-
ing quantum key distribution (QKD) techniques (see ref. 15 and
references therein)—for instance, by using ‘non-classical’ light

beams2–11. In fact, it was shown in ref. 13 that squeezed or entangled
light is not required to achieve this goal: an equivalent level of
security may be obtained by transmitting ‘quasi-classical’ coherent
states. When the line transmission is larger than 50% (line loss
#3 dB), the physical limits on QCV cloning16–18 ensure that this
protocol is secure against individual attacks. This corroborates the
fact that QKD only requires non-orthogonal states, and may well
work with macroscopic signals instead of single photons19. There are
in principle various ways for the partners Alice and Bob to distribute
keys beyond this 3 dB limit, for instance by using entanglement
purification20 or postselection12. Therefore these QCV schemes
stimulate many fundamental questions about the physical origin
of QKD security. As will be shown below, cryptographic security
appears to have a strong relationship with entanglement, even
though our protocol does not rely on entangled states.

Here we introduce and implement a coherent-state QKD proto-
col, and we demonstrate that it is, in principle, secure for any value
of the line transmission. It relies on the distribution of a gaussian
key7 obtained by continuously modulating the phase and amplitude
of coherent light pulses13 at Alice’s side, and subsequently perform-
ing homodyne detection at Bob’s side. The continuous data are then
converted into a common binary key via a specifically designed
reconciliation algorithm8,10. The security against arbitrarily high
losses is achieved by reversing the reconciliation protocol, that is,
Alice attempts to guess what was received by Bob rather than Bob
guessing what was sent by Alice. Such a reverse reconciliation
protocol14 gives Alice an advantage over a potential eavesdropper
Eve, regardless of the line loss. The practical limitations of our
scheme are essentially technical, and appear to be due mostly to the
current efficiency of the reconciliation software.

The protocol runs as follows13. First, Alice draws two random
numbers xA and p A from a gaussian distribution of mean zero and
variance VAN0, where N 0 denotes the shot-noise variance. Then,
she sends the coherent state jxA þ ip Al to Bob, who randomly
chooses to measure either quadrature x or p. Later, using a public
authenticated channel, he informs Alice about which quadrature he
measured, so she may discard the irrelevant data. After many similar
exchanges, Alice and Bob (and possibly the eavesdropper Eve) share
a set of correlated gaussian variables, which we call ‘key elements’.

Classical data processing is then necessary for Alice and Bob to
obtain a fully secret binary key. First, Alice and Bob publicly

Figure 1 Experimental set-up. Laser diode, SDL 5412 (780 nm); OI, optical isolator; l/2,

half-wave plate; AOM, acousto-optic modulator; MF, polarization maintaining single-

mode fibre; OA, optical attenuator; EOM, electro-optic amplitude modulator; PBS,

polarizer; BS, beam splitter; PZT, piezoelectric transducer. Focal lengths (f
0
) are given in

millimetres. R and T are reflection and transmission coefficients.

Figure 2 Bob’s measured quadrature as a function of the amplitude sent by Alice (in Bob’s

measurement basis) for a burst of 60,000 pulses. The line transmission is 100% and the

modulation variance is V ¼ 41.7. The solid line represents the expected unity slope.

Inset, the corresponding histograms of Alice’s (grey curve) and Bob’s (black curve) data.
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compare a random sample of their key elements to evaluate the
error rate and transmission efficiency of the quantum channel.
From the observed correlations, Alice and Bob evaluate the amount
of information they share (I AB ¼ I BA) and the maximum infor-
mation Eve may have obtained (by eavesdropping) about their
values (I AE and I BE). It is known that Alice and Bob can, in
principle, distil from their data a common secret key of size
S . sup(I AB 2 I AE, I BA 2 I BE) bits per key element21,22. This
requires classical communication over an authenticated public
channel, and may be divided into two steps: reconciliation (that
is, correcting the errors while minimizing the information revealed
to Eve) and privacy amplification (that is, making the key secret). As
we deal here with continuous data, we developed a ‘sliced’ reconci-
liation algorithm8,10 to extract common bit strings from the corre-
lated key elements. In order to reconcile Bob’s measured data with
Alice’s sent data, the most natural way to proceed is that Bob gets R
extra bits of information from Alice in order to correct the
transmission errors. The corresponding direct reconciliation (DR)
protocols, which have been used so far in QCV QKD7,13, allow the
generation of a common string of I AB þ R bits, of which Eve may
know up to IAE þ R bits. Here we rather consider reverse reconci-
liation (RR) protocols14, where Bob sends R bits of information to
Alice so that she incorporates the transmission errors in her initial
data. These RR protocols allow the generation of a common string
of I BA þ R bits, of which Eve may know IBE þ R bits. This turns out
to be particularly well suited to QCV QKD, because it is more
difficult for Eve to control the errors at Bob’s side than to read Alice’s
modulation. The last step of key extraction, namely privacy ampli-
fication, consists of filtering out Eve’s information by properly
mixing the reconciled bits to spread Eve’s uncertainty over the
entire final key. This procedure requires an estimate of Eve’s
information on the reconciled key, so we need a bound on I AE for
DR, or I BE for RR. In addition, Alice and Bob must keep track of the
information publicly revealed during reconciliation. This knowl-
edge is destroyed at the end of the privacy amplification procedure,
reducing the key length by the same amount. The DR bound13 on
I AE implies that the security cannot be warranted if the line
transmission G is below 50%. We will now establish the RR
bound on IBE, and show that it is not associated with a minimum
value of G.

In a RR scheme, Eve needs to guess Bob’s measurement outcome
without adding too much noise on his data. This can be done via an
‘entangling cloner’, which creates two quantum-correlated copies of
Alice’s quantum state, so Eve simply keeps one of them while
sending the other to Bob. Let (x in, p in) be the input field quad-
ratures of the entangling cloner, and (xB, p B), (xE, p E) the quad-
ratures of Bob’s and Eve’s output fields. To be safe, we must assume
Eve uses the best possible entangling cloner compatible with the

parameters of the Alice–Bob channel: Eve’s cloner should minimize
the conditional variances23,24 V(x BjxE) and V(p Bjp E), that is, the
variances of Eve’s estimates of Bob’s field quadratures (xB, p B).
These variances are constrained by Heisenberg-type relations (see
Methods), which limit what can be obtained by Eve:

VðxBjxAÞVðpBjpEÞ$ N2
0 and VðpBjpAÞVðxBjxEÞ$ N2

0 ð1Þ

where VðxBjxAÞ and VðpBjpAÞ denote Alice’s conditional variances.
This means that Alice and Eve cannot jointly know more about
Bob’s conjugate quadratures than is allowed by the uncertainty
principle. Now, Alice’s variances can be bounded by using the
measured parameters of the quantum channel, which in turn
makes it possible to bound Eve’s variances.

The channel is described by the linear relations xB ¼ G1=2
x ðxinþ

BxÞ and pB ¼ G
1=2
p ðpinþBpÞ; with kx2

inl¼ kp2
inl¼ V N0 $ N0;

kB2
x;pl¼ xx;p N0; and kxinBxl¼ kpinBpl¼ 0: Here xx, xp represent

the channel noises referred to its input, called equivalent input
noises23,24, while G x, Gp are the channel gains in x and p, and V is the
variance of Alice’s field quadratures in shot-noise units ðV ¼
VAþ 1Þ: The output–output correlations of the entangling cloner,
described by VðxBjxEÞ and VðpBjpEÞ; depend only on the density
matrix D in of the input field (x in, p in), and not on the way it is
produced, namely whether it is a gaussian mixture of coherent states
or one of two entangled beams. Inequalities (1) thus have to be
fulfilled for all physically allowed values of VðxBjxAÞ and VðpBjpAÞ;
given D in. Therefore, the values of VðxAjxBÞ and VðpAjpBÞ that
should be used in inequalities (1) to limit Eve’s knowledge are the
minimum values Alice might achieve by using the maximal entan-
glement compatible with V, namely (see Methods):

VðxBjxAÞmin ¼ Gx ðxx þV21ÞN0

VðpBjpAÞmin ¼ Gp ðxpþV21ÞN0

ð2Þ

These lower bounds are thus directly connected with entanglement,
even though Alice does not use it in practice. They may be compared
with the actual values when Alice sends coherent states, that is,
VðxBjxAÞcoh ¼ Gx ðxxþ 1ÞN0 and VðpBjpAÞcoh ¼ Gp ðxpþ 1ÞN0:
The lower bounds on Eve’s conditional variances are then obtained
from equations (1) and (2), as:

VðpBjpEÞ$ N0={Gx ðxx þV21Þ}

VðxBjxEÞ$ N0={Gp ðxpþV21Þ}
ð3Þ

Figure 3 Channel equivalent noise xline as a function of line transmission G. The curve is

the theoretical prediction xvac ¼ ð1 2 GÞ=G: The error bars include two contributions

with approximately the same size, from statistics (evaluated over blocks of 60,000 pulses)

and systematics (calibration errors and drifts).

Figure 4 Values of I BA, I BE and I AE as a function of the line transmission G for V < 40:

Here, I BA is given by equation (4a), including all transmission and detection noises for

evaluating V B and (V BjA)coh. The expression for I BE is given by equation (4b), using the

same V B and ðV BjEÞmin ¼ N0={G ðxlineþ V 21Þ}þ N elþ Nhom: This expression

realistically assumes that Eve cannot know the noises N el and N hom, which are internal to

Bob’s detection set-up. For comparison with DR, the value of I AE is also plotted (the

theoretical value of I AE is obtained from ref. 13).
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A physical realization of an entangling cloner reaching these bounds
is sketched in ref. 14.

To assess the security of the RR scheme, we assume that Eve’s
ability to infer Bob’s measurement can reach the limit put by
inequalities (3). For simplicity, we consider the channel gains and
noises and the signal variances to be the same for x and p (in
practice, deviations should be estimated by statistical tests). The
information rates can be derived using Shannon’s theory for
gaussian additive-noise channels25, giving

IBA ¼ ð1=2Þ log2½VB=ðVBjAÞcoh�

¼ ð1=2Þ log2½ðV þ xÞ=ð1þ xÞ� ð4aÞ

IBE ¼ ð1=2Þ log2½VB=ðVBjEÞmin�

¼ ð1=2Þ log2½G
2 ðV þ xÞ ðV21þ xÞ� ð4bÞ

expressed in bits per symbol (or per key element). Here VB ¼ kx2
Bl¼

kp2
Bl¼ G ðV þ xÞN0 is Bob’s variance, ðVBjEÞmin ¼ VðxBjxEÞmin ¼

VðpBjpEÞmin ¼N0={G ðxþV21Þ} is Eve’s minimum conditional
variance, and ðVBjAÞcoh ¼ VðxBjxAÞcoh ¼ VðpBjpAÞcoh ¼ G ðxþ 1Þ
N0 is Alice’s conditional variance for a coherent-state protocol.
The secret bit rate of a RR protocol is thus

DIRR ¼ IBA 2 IBE ¼2ð1=2Þ log2½G
2 ð1þ xÞ ðV21þ xÞ� ð5Þ

and the security is guaranteed if DIRR . 0: The equivalent input
noise x can be split into a ‘vacuum noise’ component due to the line
losses, given by xvac ¼ ð1 2 GÞ=G; and an ‘excess noise’ component
defined as 1¼ x 2 xvac: In the high-loss limit (G ,, 1), the RR
protocol remains secure if 1 , ðV 2 1Þ=ð2 VÞ< 1=2; that is, if the
amount of excess noise 1 is not too large. In contrast, a DR protocol
requires low-loss lines, as the security is warranted only if x , 1;
that is, if G . 1=ð2 2 eÞ: Note that DR tolerates an excess noise up
to 1 < 1; so it might be preferred to RR for low-loss but noisy
channels.

Our experimental implementation (Fig. 1) of the quantum key
exchange uses 120-ns coherent pulses at a 800-kHz repetition rate
(wavelength of 780 nm, see Methods). Data bursts of 60,000
pulses have been analysed (Fig. 2). For each burst, a subset of the
values are disclosed to evaluate the transmission G and the total
added noise variance. The output noise has four contributions: the
shot noise N 0, the channel noise xlineN0; the electronics noise of
Bob’s detector ðNel ¼ 0:33 N0Þ; and the noise due to imperfect
homodyne detection efficiency ðNhom ¼ 0:27 N0Þ: When intro-
ducing line losses using a variable attenuator, the measured x line

increases as ð1 2 GÞ=G; as shown in Fig. 3 (1 line ¼ 0 here). The two
detection noises Nel and N hom originate from Bob’s detection
system, so they must be taken into account when estimating I BA.
In contrast, we may reasonably assume that Eve cannot know or
control the corresponding fluctuations, so her attack is inferred on
the basis of the line noise x line only (see Supplementary Information
for details). Figure 4 shows explicitly the mutual information

between all parties, which makes straightforward the comparison
between the DR and RR protocols.

We wrote a computer program that implements the reconcilia-
tion algorithm followed by privacy amplification (see Methods and
Supplementary Information). Although Alice and Bob are not
spatially separated in the present set-up, the analysed data have
the same structure as in a realistic cryptographic exchange. Table 1
shows the ideal and practical net key rates of our reverse QKD
protocol, as well as the DR values for comparison. The RR scheme is
efficient for any value of G provided that the reconciliation protocol
achieves the limit given by I BA. However, unavoidable deviations of
the algorithm from Shannon’s limit reduce the actual reconciled
information I rec between Alice and Bob, while I BE is of course
assumed unaffected. For high modulation (V < 40) and low losses,
the reconciliation efficiency lies around 80%, which makes it
possible to distribute a secret key at a rate of several hundreds of
kilobits per second. However, the achievable reconciliation effi-
ciency drops when the signal-to-noise ratio decreases, but this can
be improved by reducing the modulation variance, which increases
the ratio I BA/I BE. Although the ideal secret key rate is then lower, we
could process the data with a reconciliation efficiency of 78% for
G ¼ 0.49 (3.1 dB) and V ¼ 27, resulting in a net key rate of
75 kbit s21 (see also Methods). This clearly demonstrates that RR
continuous-variable protocols operate efficiently at and beyond the
3 dB loss limit of DR protocols. We emphasize that this result is
obtained despite the fact that the evaluated reconciliation cost is
higher for RR than for DR: the better result for RR is essentially due
to its initial ‘quantum advantage’.

In photon-counting QKD, the key rate is limited by the single-
photon detectors, in which the avalanche processes are difficult to
control reliably at very high counting rates. In contrast, homodyne
detection may run at frequencies up to tens of MHz. In addition, a
specific advantage of the high dimensionality of the QCV phase
space is that the field quadratures can be modulated with a large
dynamics, allowing the encoding of several key bits per pulse (see
Table 1). Very high secret bit rates are therefore attainable with our
coherent-state protocol on low-loss lines. For high-loss lines, our
protocol is at present limited by the reconciliation efficiency, but its
intrinsic performances remain very high. Because most of the
limitations of the present proof-of-principle experiment appear to
be of a technical nature, there is still a considerable margin for
improvement, both in the hardware (increased detection band-
width, better homodyne efficiency, lower electronic noise), and in
the software (better reconciliation algorithms26, see Methods). In
conclusion, the way seems open for implementing the present
proposal at telecommunications wavelengths as a practical, high-
bit-rate, quantum key distribution scheme over long distances. A

Methods
Relevant Heisenberg relations
In a RR protocol, Alice’s estimator for xB and Eve’s estimator for pB can be denoted
respectively as ax A and bpE, where a, b are real numbers. The corresponding errors are

Table 1 Ideal and practical net secret key rates

V G line Losses
(dB)

IBA

(bit)
IBE

(% IBA)
I rec

(% IBA)
Ideal RR rate

(kbit s21)
Practical RR rate

(kbit s21)
Ideal DR rate

(kbit s21)
Practical DR rate

(kbit s21)
...................................................................................................................................................................................................................................................................................................................................................................

41.7 1 0 2.39 0 88 1,920 1,690 1,910 1,660
38.6 0.79 1.0 2.17 58 85 730 470 540 270
32.3 0.68 1.7 1.93 67 79 510 185 190 –
27 0.49 3.1 1.66 72 78 370 75 0 –
43.7 0.26 5.9 1.48 93 71 85 – 0 –
...................................................................................................................................................................................................................................................................................................................................................................

The parameters of the quantum key exchange are measured for several values of the channel transmission G (the corresponding losses are also given in decibels). The variations of the variance V of
Alice’s field quadrature are due to different experimental adjustments. The information IBA is given in bits per time slot. Also shown are the maximum information gained by Eve (IBE) and the extracted
information by reverse reconciliation (I rec). The ideal secret key bit rates would be obtained from our measured data with perfect key distillation that yields exactly IAB 2 IBE bits (RR) or IAB 2 IAE bits
(DR), whereas the practical secret key bit rates are the one achieved with our current key distillation procedure (‘–’ means that no secret key is generated). Both bit rates are calculated over bursts of
about 60,000 pulses at 800 kHz, not taking into account the duty cycle (,5%) in the present set-up.
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xBjA;a ¼ xB 2 axA; and pBjE;b ¼ pB 2 bpE: Because Alice’s, Bob’s and Eve’s operators
commute, we have ½xBjA;a;pBjE;b� ¼ ½xB;pB�; and thus the Heisenberg relation
Dx2

BjA;a Dp2
BjE;b $ N2

0: Defining the conditional variances as VðxBjxAÞ ¼mina{Dx2
BjA;a}

and VðpBjpEÞ ¼minb{Dp2
BjE;b}; we obtain V ðxBjxAÞV ðpBjpEÞ$ N2

0; or, by exchanging x
and p, VðpBjpAÞVðxBjxEÞ$ N2

0:
Alice has the estimators (xA, p A) for the field (x in, pinÞ ¼ ðxA þAx ; pA þApÞ that she

sends, with kA2
xl¼ kA2

pl¼ s N0:Here s measures the amount of squeezing possibly used by
Alice in her state preparation14, with s $ V21 for consistency with Heisenberg’s relations.
By calculating kp2

Al¼ ðV 2 sÞN0; kp2
Bl¼ Gp ðV þ xpÞN0; kpApBl¼ G

1=2
p kp2

Al; we obtain
the conditional variance VðpBjpAÞ ¼ kp2

Bl 2 jkpApBlj2=kp2
Al¼ Gp ðsþ xpÞN0: This

equation and the constraint s $ V21 gives VðpBjpAÞ$ Gp ðV
21þ xpÞN0; and similarly

V ðxBjxAÞ$ Gx ðV
21þ xxÞN0:The bound on VBjA is thus obtained by assuming that Alice

may use squeezed or entangled beams, while the bound on VBjE can only be achieved if Eve
uses an entangling attack. This reflects the fact that squeezing or entanglement play a
crucial role in our security demonstration, even though the protocol implies coherent
states. Our security proof addresses individual gaussian attacks only, but as the entangling
cloner attack saturates the Heisenberg uncertainty relations, we conjecture that it
encompasses all incoherent (non-collective) eavesdropping strategies.

Experimental set-up
A continuous-wave laser diode at 780 nm wavelength associated with an acousto-optic
modulator is used to emit 120-ns (full-width at half-maximum) pulses at a 800 kHz rate.
The signal pulses contain up to 250 photons, while the local oscillator (LO) power is
1.3 £ 108 photons per pulse. The amplitude of each pulse is arbitrarily modulated by an
integrated electro-optic modulator. However, owing to the unavailability of a fast phase
modulator at 780 nm, the phase is not randomly modulated but scanned continuously. No
genuine secret key can be distributed, strictly speaking, but random permutations of Bob’s
data are used to provide realistic data (see Supplementary Information). The data are
organized in bursts of 60,000 pulses, separated by synchronization periods also used to
lock the phase of the LO. The overall homodyne detection efficiency is 0.81, due to the
optical transmission (0.92), the mode-matching efficiency (0.96) and the photodiode
quantum efficiency (0.92). For the critical data at 3 dB loss, the mode-matching efficiency
was improved to 0.99, and thus the overall efficiency was 0.84. We also point out that many
blocks of data were exchanged around the 3 dB loss point, with a typical rate above
55 kbit s21.

Secret key distillation
A common bit string is extracted from the continuous data by sequentially reconciling
several strings (‘slices’) of binary functions of the gaussian key elements, applying a binary
reconciliation protocol successively on each bit8,10. Here, we used five slices, each being
corrected either by a trivial one-way protocol (communicating the bits) when the bit error
rate (BER) is high, or by the two-way protocol Cascade27,28 when the BER is low. Note that
the disclosed slices are useful for reconciling the remaining slices with less information
leaking to Eve, even though they of course do not yield secret bits as such. In addition,
Alice and Bob encrypt their classical messages using the one-time pad scheme with a
fraction of the previous key bits, or a bootstrap key for the first block. For slices corrected
with Cascade, the exchanged parities are encrypted with the same key bits on both sides29,
making Eve aware of the differences between Alice’s and Bob’s parities (that is, the error
positions) but not of their individual values. Fully communicated slices are also encrypted,
thereby revealing no information at all to Eve. Still, Eve may exploit the interactivity of
Cascade and gain some information on the final key by combining her knowledge of the
error positions with that of the correlations between Alice’s and Bob’s gaussian values. In
the present protocol, this information is numerically calculated for an entangling cloner
attack, and then destroyed by privacy amplification. This is achieved by appropriate
‘hashing’30 functions (see Supplementary Information). The resulting net secret key rate is
then obtained by subtracting, from the raw key rate, the cost of the one-time pad
encryption and the error-position information. Finally, we emphasize that sliced
reconciliation can be made very close to a one-way protocol by increasing the number of
key elements from which the bits are jointly extracted (multidimensional reconciliation8).
This approach was not implemented here, but should deliver an improved secret key rate,
approaching the value from the Csiszár–Körner formula21,22.

Received 8 July; accepted 30 October 2002; doi:10.1038/nature01289.

1. Braunstein, S. L. & Pati, A. K. Quantum Information Theory with Continuous Variables (Kluwer

Academic, Dordrecht, in the press).

2. Hillery, M. Quantum cryptography with squeezed states. Phys. Rev. A 61, 022309 (2000).

3. Ralph, T. C. Continuous variable quantum cryptography. Phys. Rev. A 61, 010303(R) (2000).

4. Ralph, T. C. Security of continuous-variable quantum cryptography. Phys. Rev. A 62, 062306

(2000).

5. Reid, M. D. Quantum cryptography with a predetermined key, using continuous-variable Einstein-

Podolsky-Rosen correlations. Phys. Rev. A 62, 062308 (2000).

6. Gottesman, D. & Preskill, J. Secure quantum key distribution using squeezed states. Phys. Rev. A 63,

022309 (2001).
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Electrically driven semiconductor lasers are used in technologies
ranging from telecommunications and information storage to
medical diagnostics and therapeutics1. The success of this class of
lasers is due in part to well-developed planar semiconductor
growth and processing, which enables reproducible fabrication
of integrated, electrically driven devices2,3. Yet this approach to
device fabrication is also costly and difficult to integrate directly
with other technologies such as silicon microelectronics. To
overcome these issues for future applications, there has been
considerable interest in using organic molecules4,5, polymers6,7,
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