On Minimum Entropy Graph Colorings

IEEE International Symposium on Information Theory 2004

Jean Cardinal — Samuel Fiorini — Gilles Van Assche

{jcardin,sfiorini,gvanassc}@ulb.ac.be.

Université Libre de Bruxelles (ULB)
Brussels, Belgium
Outline

- **Introduction**
 - Definitions
- Applications
- Complexity
- Number of Colors
- Conclusions
Graph Coloring

• **Coloring** \(\varphi \) of \(V: \{u, v\} \in E \) implies \(\varphi(u) \neq \varphi(v) \)

\[\begin{align*}
\text{Chromatic number} & \quad \chi(G) = \min_{\varphi} |\text{Range}(\varphi)| \\
\text{Many results about} \; \chi & \quad \text{E.g., } G \text{ is planar} \Rightarrow \chi(G) \leq 4
\end{align*} \]
Probabilistic Graphs

- **Probabilistic graph** \((G(V, E), P)\): probability distribution on vertices \(V\): \(P = \{p_i(v), v \in V\}\)

- **Entropy of coloring**: \(H(\varphi(X))\) if \(X\) is a random variable on \(V\) that follows \(P\)
 - Example: \(H(\varphi(X)) = H(\{0.4, 0.3, 0.3\})\)
Chromatic Entropy

- **Chromatic entropy**: minimum entropy of any coloring, \(H_\chi(G, P) = \min_\varphi H(\varphi(X)) \)

![Graph Image]

- Example: \(H(\{0.6, 0.3, 0.1\}) < H(\{0.4, 0.3, 0.3\}) \)

Outline

• Introduction

• **Applications**
 • Compression of digital image partitions
 • Source coding with side information

• Complexity

• Number of Colors

• Conclusions
Comp. of Image Partitions

- **Raster** image, segmented into **regions**

- Encoding of partition only: **compression**
 - Adjacency graph planar: up to 2 bits/pixel...
 - …but \(H_\chi(G, P) < 2 \) may be needed actually!
 - Sometimes 5 colors work better than 4

Coding with Side Inform. (1/4)

- Source coding with side information known at the receiver

\[X \xrightarrow{\alpha} \alpha(X) \xrightarrow{\beta} X \]

- No error is tolerated: **zero-error** coding required

Coding with Side Inform. (2/4)

- Example: encoding X with Y as side information

<table>
<thead>
<tr>
<th>$Y \setminus X$</th>
<th>X_1</th>
<th>X_2</th>
<th>X_3</th>
<th>X_4</th>
<th>X_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y_1</td>
<td>1/7</td>
<td>1/7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y_2</td>
<td></td>
<td>1/7</td>
<td>1/7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y_3</td>
<td></td>
<td></td>
<td>1/7</td>
<td>1/7</td>
<td>1/7</td>
</tr>
</tbody>
</table>

- Characteristic graph G: $V(G) = \mathcal{X}$,
 $x_1x_2 \in E(G)$ iff $\exists y$: $\Pr[(x_1, y)] \Pr[(x_2, y)] > 0$
Coding with Side Inform. (3/4)

- **Restricted inputs:**
 \[x_1x_2 \in E(G) \Rightarrow \alpha(x_1) \text{ not a prefix of } \alpha(x_2) \]

- **Not prefix-free!**
 - Prefix-free and unambiguous given any \(Y = y \)
 - \(L_{RI} \leq H_{\chi}(G, X) + 1 \)
 - \(L_{RI,\infty} = \lim_{n \to \infty} \frac{1}{n} H_{\chi}(G^{\wedge n}, X^{(n)}) \)
Coding with Side Inform. (4/4)

- **Unrestricted inputs:** globally prefix-free and $x_1 x_2 \in E(G) \Rightarrow \alpha(x_1) \neq \alpha(x_2)$

\[
\begin{array}{c}
00 & 01 \\
\circ & \circ \\
1 & 01 \\
00 & 00 \\
\end{array}
\]

- Prefix-free without knowledge of Y (more robust)
 - Unambiguous given any $Y = y$
 - $H_X(G, X) \leq L_{UI} \leq H_X(G, X) + 1$
 - $L_{UI, \infty} = \lim_{n \to \infty} \frac{1}{n} H_X(G^{\wedge n}, X^{(n)})$
Outline

- Introduction
- Applications
- Complexity
 - On Maximum Weight Independent Sets
 - On Disjoint Components
 - Hardness of MINENTCOL
- Number of Colors
- Conclusions
On Max. Weight Indep. Sets

- Favor large color classes?

![Graphs with different color classes and entropy values]

- The minimum entropy coloring does not always contain a maximum weight independent set!
On Disjoint Components

- Can we optimize disjoint components separately?

- No!
Hardness of MINENTCOL (1/2)

- **MINENTCOL**:
 - Instance defined by \((G, P)\)
 - Output: coloring \(\varphi(V)\) such that \(H(\varphi(X)) = H_\chi(G, P)\)
- **MINENTCOL** is **NP-hard**

Hardness of MINENTCOL (2/2)

- MINENTCOL still NP-hard if restricted:
 - $G(V, E)$ is planar,
 - P is the uniform distribution, and
 - $\varphi(V)$ that achieves $\chi(G)$ is given as input

- Proof by reduction to 3-colorability
- Finding χ and H_χ are different matters!
Outline

• Introduction
• Applications
• Complexity
• **Number of Colors**
 • Definition of χ_H
 • Construction to Increase χ_H
• Conclusions
Number of Colors

- **Definition**: $\chi_H(G, P)$ is the minimum number of colors to achieve $H_\chi(G, P)$

- Simple bound: $\chi_H(G, P) \leq \Delta(G) + 1$, where $\Delta(G)$ is the max. degree of any vertex of G

- Questions:
 - Can $\chi_H(G, P) > \chi(G)$? **Yes!**
 - Does $\exists f : \chi_H(G, P) \leq f(\chi(G))$? **No!**
Construction to Increase χ_H

- Attach n vertices to each vertex of G:
Construction to Increase χ_H

- Attach n vertices to each vertex of G:

- For n sufficiently large: new vertices need one new color
- Closed for bipartite graphs, trees, planar graphs
- Repeat it many times: $\chi_H(G, P) \gg \chi(G)$
Outline

• Introduction
• Applications
• Complexity
• Number of Colors
• Conclusions
Conclusions

- Entropy graph coloring: interesting problem with many applications

Results:
- MINENTCOL is NP-hard, even if G planar, P uniform and min. coloring given
 - $\chi_H(G, P) \leq \Delta(G) + 1$
 - $\chi_H(G, P) \not\leq f(\chi(G))$

Recent results:
- Polynomial algorithm for graphs G such that \bar{G} is triangle-free
- G not complete nor odd cycle, P uniform
 $\implies \chi_H(G, P) \leq \Delta(G)$ (variant of Brooks’ th.)
Conclusions

- **Open problems:**
 - Polynomial algorithm for other families of graphs? Cycles, bipartite graphs, trees?
 - Lower bounds on $\chi_H(G, P)$?
 - Source coding with side information: what about small error tolerance?

See http://www.ulb.ac.be/di/publications/