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Abstract

Turbo coding is a powerful class of error correcting
codes, which can achieve performances close to the
Shannon limit. The turbo principle can be applied
to the problem of side-information source coding, and
we investigate here its application to the reconciliation
problem occuring in a continuous-variable quantum key
distribution protocol.

1. INTRODUCTION

1.1. Side-Information Source Coding

Given a source of two correlated random variables
X and Y , the minimal achievable rate of encoding of
X is H(X |Y ) when Y is given losslessly to the de-
coder. Surprisingly, this rate is also achievable when Y

is known only to the decoder, but not to the encoder
[1]. In this setting, Y is called the side information and
the encoding of X is known as side-information source
coding.

The construction of efficient side-information source
coding schemes is a difficult problem [2]. Recently,
turbo codes have shown to be good candidates for this
coding application [3].

1.2. The Turbo Principle

Turbo coding was first introduced in 1993 by Berrou
et al. [4]. Since then it has been intensively studied
and has proved to approach the Shannon limit closer
than any other known forward error correcting code.
The efficiency of the turbo codes is due to the use of
an iterative process at the decoder side and the pres-
ence of an interleaver at the encoder side, which adds
randomness-like effects to the code.
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Our motivation for studying side-information cod-
ing in general, and turbo codes specifically, is described
next.

1.3. Quantum Key Distribution

Quantum key distribution (QKD), also called quan-
tum cryptography, allows two parties, Alice and Bob,
to share a secret key that can be used for encrypt-
ing messages using a classical cipher, e.g., the one-
time pad. The main interest of such a key distribution
scheme is that any eavesdropping is, in principle, de-
tectable as the laws of quantum mechanics imply that
measuring a quantum state generally disturbs it.

To share a secret key, a few steps must be per-
formed. First, quantum states are sent from Alice to
Bob, or vice-versa, on the so-called quantum channel.
This process gives the two parties correlated random
variables, XA and XB . Then, using a classical public
authenticated channel, Alice and Bob compare a sam-
ple of the transmitted data, from which they can deter-
mine an upper bound on the amount of information a
possible eavesdropper may have acquired. Finally, they
distill a common secret key K, which is conventionally
a function of XA.

Secret key distillation [5] usually involves two steps.
In the first step, called reconciliation, Alice and Bob ex-
change information over the public authenticated chan-
nel in such a way that Bob can recover XA knowing
XB . The exchanged information is considered known
to an eavesdropper. The second step consists in ap-
plying a privacy amplification protocol [6] to wipe out
the enemy’s information on both quantum and classi-
cal transmissions, at the cost of a reduction in the key
length. This reduction is roughly equal to the number
of bits known to an eavesdropper [6].

It thus appears clearly that reconciliation should
not give more information than necessary on XA, oth-
erwise resulting in a penalty in the key length. Hence,
the interest of investigating the use of (efficient) turbo



coding in this context.

1.4. Problems with Interactive Reconciliation

An additional motivation for using turbo codes in
the scope of QKD lies in that reconciliation is tradi-
tionally performed using interactive protocols, such as
Cascade [7]. While they are perfectly suited to dis-
crete QKD protocols, such as BB84 [8], they suffer
from both practical and fundamental problems when
used for continuous-variable QKD protocols [9]. For
a given number of reconciliation bits transmitted from
Alice to Bob, interactive protocols impose an additional
penalty on the key length over one-way protocols, due
to the information leaked from the reconciliation bits
originating from Bob. Furthermore, the evaluation
of this leaked information depends on the particular
eavesdropping strategy, which rules out the use of this
method when no assumption on the enemy’s side may
be made. More details are given in Sec. 3.

Replacing interactive reconciliation protocols by ef-
ficient side-information coding is thus another strong
motivation for studying this application of turbo cod-
ing. Note that the use of other error-correcting codes
for secret key distillation was studied by several authors
(e.g., see [10, 11]).

2. TURBO CODING WITH SIDE INFOR-

MATION

2.1. Turbo Encoder and Turbo Decoder

A turbo encoder is a parallel concatenation of two,
or more, constituent codes separated by one, or more,
interleavers. The constituent codes are usually two
identical recursive systematic convolutional codes. The
input sequence to be encoded is divided into blocks of
length N . Each block is encoded by the first encoder
and interleaved before passing through the second en-
coder. In channel coding, the systematic output of the
first encoder, along with the parity check bits of both
encoders are transmitted through the channel. Such a
scheme usually uses rate half constituent encoders, so
the overall rate is one third. This rate can be increased
by puncturing a fraction of the parity bits.

The turbo decoder consists of two, or more, Soft-In
Soft-Out (SISO) maximum likelihood decoders. Those
decoders operate in parallel, passing extrinsic informa-
tion to one another in an iterative way. The error rate
is lowered after each iteration but the gain in bit error
rate decreases as the number of iterations increases, so
for complexity reasons the decoder typically performs
between 6 and 20 iterations.

2.2. Decoding Algorithm

Two families of decoding algorithms are commonly
used in turbo decoding: Soft Output Viterbi Algo-
rithms (SOVA) and Maximum A Posteriori (MAP) al-
gorithms. The MAP algorithm is more efficient but
more complex than the SOVA, but simplified versions
of this algorithm, like MAX-Log-MAP and Log-MAP,
perform almost as well with a reduced complexity.

Each encoder can be represented by a trellis dia-
gram in which each node represents a state of the shift
registers and each branch represents a transition be-
tween two states, depending on the value of the in-
put bit. The decoding algorithm must find the path
through the trellis corresponding to the correct input
sequence. We will here describe the MAP algorithm
which was proposed by Bahl et al. [12] in 1974.

Each component decoder takes as input the system-
atic values from the channel, the parity bits transmit-
ted from the associated component encoder, and the
information from the other decoder about the likely
values of the bits, which is referred to as a-priori in-
formation. The decoder then provides not only the es-
timated bit sequence but also the probability for each
bit that it has been decoded correctly. This probability
is the a-posteriori Log Likelihood Ratio (LLR) and is
computed for each bit uk in the sequence.

L(uk|y) = ln

(

P (uk = +1|y)

P (uk = −1|y)

)

where y is the received sequence, the value +1 repre-
sents the transmitted bit 0 and -1 represents the trans-
mitted bit 1. This LLR can be rewritten as:

L(uk|y) = ln

(
∑

(s′,s)⇒uk=+1 P (Sk−1 = s′ ∧ Sk = s ∧ y)
∑

(s′,s)⇒uk=−1 P (Sk−1 = s′ ∧ Sk = s ∧ y)

)

where
∑

(s′,s)⇒uk=+1 sums over the set of transitions
that can occur if the input bit uk = +1, and similarly
for
∑

(s′,s)⇒uk=−1. The probability P (Sk−1 = s′∧Sk =

s ∧ y) can be split into 3 terms:

P (Sk−1 = s′ ∧ Sk = s ∧ y) = αk−1(s
′) γk(s′, s) βk(s)

These 3 terms are successively computed by the algo-
rithm.

- γk(s′, s) is the probability that given the trellis
was in state s′ at time k − 1, it moves to state s

and the received channel sequence for this tran-
sition is yk.

γk(s′, s) = P (yk|xk) P (uk),

where P (uk) is the a-priori probability given by
the previous component decoder and P (yk|xk) is



the probability that given the codeword xk as-
sociated with the transition was transmitted the
channel sequence yk was received.

- αk−1(s
′) is the probability that the trellis is in

state s′ at time k − 1 and the received channel
sequence up to this point is yj<k. The αk(s) are
computed for each k and each s in a forward re-
cursive manner:

αk(s) =
∑

all s′

αk−1(s
′) γk(s′, s),

with the initial conditions depending on the ini-
tial state of the trellis.

- βk(s) is the probability that given the trellis is
in state s at time k the future received channel
sequence will be yj>k. The βk(s) are computed
for each k and each s in a backward recursive
manner:

βk−1(s
′) =

∑

all s

βk(s) γ(s′, s),

with the initial conditions depending on the final
state of the trellis.

Finally the LLR is computed for each bit in the
sequence,

L(uk|y) = ln

(
∑

(s′,s)⇒uk=+1 αk−1(s
′) γ(s′, s) βk(s)

∑

(s′,s)⇒uk=−1 αk−1(s′) γ(s′, s) βk(s)

)

,

and this information is passed to the second constituent
decoder as a-priori information.

After the last iteration is completed, a final hard
decision is taken for each bit, following:

uk =

{

+1 if L(uk|y) ≥ 0
−1 if L(uk|y) < 0

2.3. Application to Side-Information Source

Coding

In the turbo coding principle, the systematic out-
put of the first component encoder is sent through the
channel together with the parity bits from the two en-
coders. Turbo coding can be used for side-information
source coding if we consider the input bit sequence as
the random variable X , the systematic output of the
channel as the side information Y , and the parity bits
from the two encoders as the information provided to
recover X from Y .

Thus, in practice, Y is a noisy version of X that is
known by the receiver, X is encoded with a turbo en-
coder by the emitter but only the parity bits are trans-
mitted, and the receiver uses those parity bits and Y to

recover X by turbo decoding. To achieve a transmis-
sion rate close to the Slepian-Wolf limit, an appropri-
ate puncturing pattern must be used to transmit only
a fraction of the produced parity bits.

3. RECONCILIATION FOR CONTINUOUS-

VARIABLE QKD

Gaussian-modulated QKD protocols using coherent
states have shown to deliver higher secret bit rates than
those based on single photons while using standard
telecom optical components [9]. Since they produce
continuous variables (i.e., XA and XB are correlated
Gaussians), a reconciliation procedure adapted to this
situation must be used. We here assume that the vari-
able XA is converted into bits, as described in [13] and
implemented in [9].

Without going into the details, each instance of XA

is transformed into m bits, making m l-bits strings
{Si}i∈{1...m}, each called a slice, when a run of the
QKD protocol produces l instances of Gaussian vari-
ables. These ml bits will serve as input to the privacy
amplification protocol. On his side, Bob needs to de-
termine Alice’s bit values. For this, he calculates his
best estimate of Si given the l values of XB , thus pro-
ducing the l-bit string S̃i for each i. (1) Using a binary
reconciliation protocol, Bob then recovers Si given his
knowledge of S̃i.

Even though we started from continuous variables,
we thus reach a situation where Alice and Bob need
to reconciliate the binary string Si, given that Bob
knows the correlated binary string S̃i. The two strings
are related by the error rate ei, that is the probabil-
ity that a bit of Si is not equal to the correspond-
ing bit in S̃i. Overall, the reconciliation produces
H(S1...m) uniform bits by disclosing

∑

i=1...m f(ei)
bits, with f(e) the number of bits needed to encode
a l-bit string given that the decoder knows a corre-
lated string with bit error rate e. The net result is thus
H(S1...m) −

∑

i=1...m f(ei).

3.1. Binary Reconciliation

Let us discuss the different options for the binary
reconciliation of a given slice with error rate e. Of
course, it is always possible to encode S using l bits, so
that f(e) ≤ l.

Using a interactive reconciliation protocol such as
Cascade [7] implies that Alice and Bob exchange par-
ities of various subsets of their strings. After running
Cascade, Alice and Bob have disclosed RS and RS̃ for

1Actually, the slices are corrected sequentially, for i = 1 . . . m,
so that the estimation of S̃i can also depend on the knowledge
acquired from the previous corrected slices Sj , j < i [13].



some binary matrix R of size d × l. They thus have
communicated the parities calculated over d identical
subsets of bit positions. The matrix R and the num-
ber d of disclosed parities are not known beforehand
but are the result of the interactive protocol, depend-
ing on the diverging parities encountered. For Cascade,
d ≈ l(1+ξ)h(e), where h(e) = −e log e−(1−e) log(1−e)
and ξ is some small overhead factor ξ � 1.

In the case of balanced bit strings (i.e., the proba-
bilities of 0 and 1 are the same), the parities RS give
Eve d bits of information on S, but RS̃ does not give
any extra information since it is merely a noisy version
of RS, or stated otherwise, S → RS → RS̃ is a Markov
chain.

However, in the more general case where we need
to take into account that Eve gathered in E some in-
formation on both S and S̃ by eavesdropping on the
quantum channel, S|E → RS|E → RS̃|E does not
necessarily form a Markov chain. Instead, the actual
number of bits disclosed during reconciliation, namely
I(RS, RS̃; S|E), must be explicitly evaluated. This
quantity is in general larger than d, therefore adding
an extra cost due to interactivity.

Furthermore, it is unfortunately impossible to eval-
uate this quantity without making an assumption on
the eavesdropping strategy, since we need to explic-
itly express the variable E. In [9], this quantity was
calculated for the most general assumption within the
scope of that paper (i.e., assuming any individual Gaus-
sian eavesdropping strategy). However, beyond this as-
sumption, the calculation loses its validity.

To remove any assumption, a possibility is to up-
per bound the number of disclosed bits as if both
parties disclosed independent information, that is,
I(RS, RS̃; S|E) ≤ 2d ≈ 2l(1 + ξ)h(e). This is unfortu-
nately too expensive in practice, except when e is small,
and causes the secret key rate to vanish if this worst-
case measure is taken for all slices. (We will use this
solution for small e in our application, see Sec. 4.3.)

Another option for reconciliation is of course to use
side-information source coding, as we will do in Sec. 4.
This provides a non-interactive reconciliation protocol
that has the advantages of being independent of the
eavesdropping strategy and free of interactivity cost.

4. APPLICATION TO AN EFFICIENT QKD

PROTOCOL

4.1. Settings

We used a turbo code as a binary reconciliation
protocol in the continuous-variable QKD protocol de-
scribed in [9].

The component encoders are two 16-state duo-
binary recursive systematic convolutional encoders
with generator polynomials (23, 35) [14]. The inter-
leaver is a variation of the odd/even interleaver pre-
sented by Barbulescu [15] and is detailed in section
4.2. The puncturing pattern depends on the estimated
error rate and is chosen to minimize the number of bits
sent to Bob to achieve a final BER < 10−6.

The decoding algorithm is the Log-MAP algorithm,
which is similar to the MAP algorithm but operates in
the log-domain. We applied a scheme proposed by Fujii
et al. [16], which consists of weighting the extrinsic
information exchanged by the two decoders by a factor
depending on whether or not the corresponding parity
bit has been received for this bit. We performed 18
iterations with block size N = 10000.

4.2. Interleaver

Barbulescu [15] introduced an interleaver called
odd/even designed for rate 1

2 turbo codes. In rate 1
2

turbo codes, half the parity bits from each encoder are
punctured, so the odd/even interleaver interleaves the
bits in such a way that each information bit has its
corresponding parity bit transmitted by one and only
one encoder. Thus the coding power is uniformly dis-
tributed over all the information bits.

For our application, the puncturing pattern de-
pends on the estimated error rate and is different in
each case. The interleaver is designed depending on
the puncturing pattern in the following way:

1. The information bits are split into 2 groups V1

and V2: V1 contains bits whose parity bit has been
transmitted by the first encoder and V2 contains
bits whose parity bit has not been transmitted by
the first encoder.

2. The 2 groups are interleaved separately and
pseudo-randomly.

3. The bits are reordered in a vector W in the fol-
lowing way: the places in W for which the parity
bits will be transmitted by the second encoder are
filled with bits from V2 first and with bits from
V1 if needed. The remaining places in W are then
filled with the remaining bits.

4. The vector W contains the reordered bits to be
passed to the second encoder.

This procedure prevents us from transmitting the
two parity bits from one bit, while another bit has none
of his parity bits transmitted. Note that if more than
half the parity bits are punctured, some information
bits will not have any of their parity bits transmitted,



but we are assured that none will have both parity
bits transmitted. On the other hand, if less than half
the parity bits are punctured, some bits will have both
parity bits transmitted, but all bits will have at least
one parity bit transmitted.

4.3. Results

Figure 1 shows the number of bits disclosed as a
function of the bit error rate. According to these re-
sults, we chose the best strategy among three possible
options, depending on the bit error rate, so as to min-
imize the number of disclosed bits. Each binary string
Si was reconciliated using one of these three options,
depending on the estimated error rate ei:

- if ei > 15%, the string was completely revealed,
disclosing l bits of information;

- if ei < 0.8%, an interactive error correction pro-
tocol (Cascade) was preferred and the number of
disclosed bits was counted independently for Al-
ice and for Bob;

- otherwise, the turbo coding scheme described
above was used.

In Table 1, our results are compared with those of
[9] based on the use of reverse reconciliation with esti-
mate of the interactivity cost under assumptions. An
example of the processing of each slice is given in Ta-
ble 2: each slice is reconciliated using full disclosure,
Cascade, or a turbo code. For higher losses, the gain
on the interactivity cost more than compensates for the
higher number of parity bits revealed by a turbo code.

Modulation Losses Results Cascade and
Variance (dB) from [9] Turbo Code

rate (kbs−1) rate (kbs−1)
41.7 0 1690 1605
38.6 1.0 470 450
32.3 1.7 185 209
27 3.1 75 81

Table 1: Net secret key rate with modulation frequency
of 800 kHz.

5. CONCLUSIONS

We have shown that decoupling reconciliation and
eavesdropping analysis in continuous-variable QKD
protocols by using turbo codes allows close, if not bet-
ter, results than by using Cascade and an evaluation
of interactivity costs under assumptions. Furthermore,
this opens the way to enhancing the secret key rate

Estimated Binary Disclosed Shannon
Slice BER Correction Bits Limit

ei (%) Protocol h(ei)
1 49.68 Full Disclosure l 0.99
2 34.89 Full Disclosure l 0.93
3 6.38 Turbo Code 0.46l 0.34
4 0.02 Cascade 2 × 0.005l 0.0027
5 6 × 10−12 Cascade 2 × 0.004l 3 × 10−10

Table 2: Disclosed bits for each slice, corresponding to
the 2nd row of Table 1.
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Figure 1: Number of disclosed bits as a function of the
bit error rate.

for lossy (long-distance) transmissions, for which the
interactivity seems to play a critical role.
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