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Security of Quantum Key Distribution with Coherent States and Homodyne Detection
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We assess the security of a quantum key distribution protocol relying on the transmission of
Gaussian-modulated coherent states and homodyne detection. This protocol is shown to be equivalent
to an entanglement purification protocol using CSS codes followed by key extraction, and is thus secure
against any eavesdropping strategy.
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Quantum key distribution (QKD) uses quantum me-
chanics to provide two parties (Alice and Bob) with a
secret key [1], which they can later use to encrypt con-
fidential information. Unlike classical key distribution,
QKD relies, at least in principle, on no computational
assumption [1], but only draws its validity from the laws
of quantum mechanics. The resources needed for QKD
always comprise a source of nonorthogonal quantum
states on Alice’s side, a quantum channel conveying these
states to Bob, a measuring apparatus on Bob’s side, and a
(public) authenticated classical channel between Alice
and Bob. QKD protocols generally consist in two (inter-
twined) parts. The first part consists in probing the quan-
tum channel to determine whether it is possible to
securely transmit the key over it. The second part consists
in the explicit distillation of the secret key. It is the use of
nonorthogonal quantum states which allows one to reli-
ably probe the quantum channel.

Most interest in QKD has been devoted to protocols
involving (an approximation to) a single-photon source
on Alice’s side and a single-photon detector on Bob’s side
[1,2]. However, protocols involving quantum continuous
variables have lately been considered with an increasing
interest [3–6]. Of special importance are ‘‘coherent-
state’’ protocols [7,8]. The quantum source at Alice’s
side then randomly generates coherent states of a light
mode with a Gaussian distribution, and Bob’s measure-
ments are homodyne measurements. These protocols
seem to allow for facilitated implementations and higher
secret-key generation rates than the protocols involving
single-photon sources [8].

In this Letter, we constructively prove that secure
coherent-state protocols exist. Previous security analyses
have been carried out, but they were restricted to indi-
vidual Gaussian [7,8] or finite-size non-Gaussian [9]
eavesdropping strategies. We here want to address a
more general setting and allow a potential eavesdropper
(Eve) to probe the quantum channel between Alice and
Bob in any manner she pleases. We want to establish
the security of coherent-state protocols against arbi-
trary coherent attacks (see [10] and references therein).
The importance of our result lies in that it shows that
no nonclassical feature of light, such as squeezing, is
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necessary for continuous-variable QKD: coherent states,
homodyne detection, and well-chosen communication
procedures are sufficient for Alice and Bob to distill a
secret key.

The basic ingredient that we shall use in the remaining
is the argument used in [10] to prove the security of the
BB84 protocol, when classical postprocessing derives
from a Calderbank-Shor-Steane (CSS) code. Let us start
with a brief review of this argument. It is well known that
quantum error-correcting codes provide a means to per-
form entanglement purification with one-way communi-
cation [11]. The situation where Alice and Bob share N
noisy entangled qubit pairs is fully equivalent to a situ-
ation where Alice would have prepared N pairs, all in the
Einstein-Podolski-Rosen (EPR) state

j��i �
1���
2

p �j00i � j11i�; (1)

and would have kept half of each pair for herself while
sending all other halves to Bob through some noisy quan-
tum channel. The effect of this channel on the state can be
modeled as if the state either remains unaltered or under-
goes one of the three following ‘‘errors’’: bit-flip, �� !
 �, or phase-flip, �� ! �	, or both, �� !  	, where
j�	i� 1��

2
p �j00i	j11i� and j 
i� 1��

2
p �j01i
j10i�. In the

latter situation, Alice and Bob could get pure EPR pairs
upon Alice using a quantum error-correcting code
(QECC) to protect the halves sent to Bob from the noise
effected by the channel. Equivalently, in the former situ-
ation, Alice and Bob can get CN pairs in the state (1)
(C � 1) upon Alice and Bob measuring the syndromes
(or error patterns) of some QECC, Alice communicating
the values of her syndromes to Bob, and Bob performing
error correction so as to align the values of his syndromes
on those of Alice. Then, C is the rate of the used quantum
code. Clearly, secure QKD can be achieved from entan-
glement purification: Alice and Bob can certainly extract
a secret bit from the state (1).

A (binary) CSS code is a 2k-dimensional subspace of
the Hilbert space of n qubits (k � n) [12,13]. Such a code
belongs to the class of so-called stabilizer codes; i.e., they
are defined as the eigenspace of a set of mutually com-
muting operators fO1; . . . ;OAg, the stabilizer generators.
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The essential feature of a CSS code is that all stabilizer
generators are either of the form Xs1 � . . . � Xsn or of
the form Zs1 � . . . � Zsn , where Xjii � ji � 1i, Zjii �
�	�ijii, and where �s1; . . . ; sn� 2 f0; 1gn. Because of this
feature, it is possible to prove that entanglement purifica-
tion using a CSS code followed by key extraction is fully
equivalent to a quantum cryptographic protocol using
BB84 as a physical part, supplemented with suitable error
correction and privacy amplification [10]. The postpro-
cessing works as follows. Let the binary vectors K and
K0 denote, respectively, Alice’s and Bob’s raw key bits,
and let C2 � C1 denote two embedded n-bit classical
linear codes, with parity check matrices, respectively,
H1 and H2 [14]. Alice announces the syndrome H1K.
Bob corrects K0 to the nearest vector K00 such that
H1K

00 � H1K (error correction). With high probability,
K00 � K. The key is then reduced to H2K (privacy
amplification).

Entanglement purification is (asymptotically) achiev-
able using a CSS code as long as the bit-flip probability eb
and the phase-flip probability ep satisfy

C � 1	 h�eb� 	 h�ep�> 0; (2)

where h�x� � 	log2x
x�1	 x��1	x� denotes the binary

Shannon entropy [10]. Equivalently, the BB84 protocol
allows Alice and Bob to distill a secret key using the
above error correction and privacy amplification schemes
if the error rates for two conjugate bases satisfy (2).

From QKD schemes based on entanglement purifica-
tion for qubits, it is possible to derive a secure QKD
scheme using squeezed states and homodyne detection,
which is in spirit very close to the BB84 protocol [4]. Let
us present this scheme in a slightly modified form. Let x̂
and p̂ denote two conjugate quadratures of a single mode
of the electromagnetic field (�x̂; p̂� � i). Alice creates
(about) 4N quantum oscillators in a squeezed state as
follows. She draws a 4N-bit string b to decide for each
of the 4N oscillators whether it will be prepared in an
x-squeezed state or in a p-squeezed state. For each oscil-
lator, she draws a real value x [or p] according to a
probability distribution Ppos�x� [or Pmom�p�], and sends
Bob an x-squeezed [or p-squeezed] state centered on �x; 0�
[or �0; p�]. Bob receives the states and decides at random
to measure each of them either in the x basis or in the p
basis. By public discussion, Alice and Bob discard the
oscillators for which Alice’s choice of preparation and
Bob’s choice of measurement mismatch. Alice and Bob
should now have a list of (about) 2N correlated real values
�x1; x

0
1�; . . . ; �x2N; x

0
2N� from which they wish to extract

bits. To do so, Alice decomposes each real value, x, as x �
�S�x� � S�x��

����
�

p
, where S�x� is an integer, and reveals

S�x� to Bob. Alice’s bit is the parity of S�x�. Bob subtracts
S�x�

����
�

p
from his corresponding real value, x0, and adjusts

his result x0 	 S�x�
����
�

p
to the nearest integer multiple of����

�
p

. The key bit will be 0 if this integer is even, and 1
otherwise. At this point, Alice and Bob agree on a subset
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of size (about) N of their key elements that they use for
verification. A bit error (phase error) occurs when Alice
sends an x-squeezed state (a p-squeezed state), and
Alice’s bit and Bob’s bit mismatch. If the estimates of
the error rates eb and ep satisfy Eq. (2), Alice and Bob
further proceed with error correction and privacy ampli-
fication to distill a secret key out of the N remaining key
elements exactly as in the BB84 protocol.

The bit error rate eb is bounded by the probability that,
when Alice sends an x-squeezed state centered on the
value x0, jsq�x0�i, and Bob performs an x̂ homodyne
measurement, Bob gets an outcome whose value differs
from x0 by a magnitude greater than

����
�

p
=2. The phase-

error rate, ep, can be bounded similarly. Therefore, even
in the absence of eavesdropping, eb and ep will be non-
zero due to finite squeezing. As a consequence, it can be
proven that a minimum of 2.51 dB of squeezing is neces-
sary for the protocol to work [4].

We now want to convert the above squeezed-state pro-
tocol to a coherent-state protocol. For that, we first ob-
serve that three modifications can be brought to it without
weakening its security. First [4], the above protocol is
equivalent to an asymmetric protocol where Alice de-
composes her real values as x � �S�x� � S�x���

����
�

p
when

using the x quadrature, and p � �S�p� � S�p��
����
�

p
=�

when using the p quadrature, where S�x� [S�p�] is an
integer and � is some positive real parameter. Such an
asymmetric protocol allows Alice to squeeze unequally
the x and p quadratures. The squeezing should only be
such that Eq. (2) is obeyed. In particular, Alice can use
coherent states when encoding in the x quadrature if,
when encoding in the p quadrature, she uses states ex-
hibiting at least 3.37 dB of squeezing. Our second modi-
fication concerns the method used by Alice for encoding.
When she chooses to encode in the x quadrature, she
draws the value of x from the probability distribution
Ppos�x� and prepares a coherent state centered on �x; 0�.
However, the decision to prepare states centered on �x; 0�
relies on an arbitrary convention between Alice and Bob
about the position of the x axis. Instead of sending a state
centered on �x; 0�, Alice could as well send a state cen-
tered on �x; p�, where the value p, drawn from some
probability distribution P0

pos�p�, may in principle be pub-
licly disclosed to allow Bob to displace the state back on
the x axis. Of course, a similar remark applies when Alice
encodes information using the p quadrature. As a third
modification, we note that there is no loss of security if
Alice and Bob decide that the key is encoded in the
coherent states and never in the squeezed states. They
can decide that about two-thirds of the time Alice will
send coherent states to transmit the key and to estimate
eb, while about a third of the time Alice will send
p-squeezed states to estimate ep. (Note that this fact holds
for BB84 as well: one can decide that the key is encoded
only in the Z eigenstates, while the X eigenstates are sent
only to determine the phase-error rate.)
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In summary, the following is a secure squeezed-state
protocol.

(1) Alice prepares the state

S � Scohkey � S
coh
ck � Ssqck;

where Scohkey � �1 � . . .�N and Scohck � �c1 � . . .�cN are
tensor products of N coherent states, drawn from some
probability distribution Ppos�x�P0

pos�p�, and Ssqck �
�1 � . . .�N is a tensor product of N p-squeezed states
drawn from some probability distribution P0

mom�x� �
Pmom�p�. These probability distributions are chosen
such that the ensemble formed by the coherent states is
identical to the ensemble formed by the squeezed states:

�ens �
Z
dxdpPpos�x�P0

pos�p���x; p�

�
Z
dxdpP0

mom�x�Pmom�p���x; p�; (3)

where ��x; p� � jcoh�x; p�ihcoh�x; p�j [��x; p� �
jsq�x; p�ihsq�x; p�j] denotes a coherent state [a
p-squeezed state] centered on �x; p�.

(2) Alice picks a random permutation of 3N elements,
�, and sends the state �S�� to Bob.

(20) Let the CP map T:B�H �3N� ! B�H �3N� denote
the quantum channel between Alice and Bob, where H
denotes the Hilbert space of a quantum oscillator, and
where B�H �3N� denotes the space of bounded operators
over H �3N . Thus, T represents the (possibly collective)
eavesdropping strategy used by Eve.

(3) After Bob acknowledges receipt of the oscillators,
Alice reveals the permutation �, which Bob undoes:
T��S��� ! T��S� � ��T��S����. For each �cj 2 Scohck ,
Alice publicly discloses the values xj � tr x̂�cj , and for
each �j 2 Ssqck, she discloses the values pj � tr p̂�j.

(4) For each �cj 2 Scohck , Bob measures the binary effect

X�xj��
R
�1
�
���
�

p
=2�xj

dxjxihxj�
R	�

���
�

p
=2�xj

	1 dxjxihxj. The cor-

responding outcome eb;j equals 1 if X�xj� is measured
and eb;j � 0 otherwise. Similarly, for each �j 2 Ssqck,
Bob measures the effect P�pj� �

R
�1���
�

p
=2��pj

dpjpihpj�R	
���
�

p
=2��pj

	1 dpjpihpj and gets an outcome ep;j.
(5) If the estimates for the bit error rate, eb �

1
N

P
jeb;j,

and the phase-error rate, ep � 1
N

P
jep;j, satisfy the CSS

rate inequality (2), Alice and Bob extract bits from the
remaining oscillators, Scohkey, and proceed further with
error correction and privacy amplification to distill a
secret key.

To convert this protocol to a secure coherent-state
protocol, all we need to prove is that the phase-error
rate, ep, can be estimated upon Alice sending only co-
herent states instead of squeezed states and Bob perform-
ing only homodyne measurements. Therefore, consider a
situation where, instead of sending the state S � Scohkey �

Scohck � Ssqck, Alice was preparing the state
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R � Scohkey � S
coh
ck � Spck;

where Scohkey and Scohck are again used to distill the key and
estimate the bit error rate, respectively, and where Spck �
��M
1 � . . . � ��M

K denotes a tensor product of KM � N0

coherent states. If Alice and Bob were able to get a re-
liable estimate of the phase-error rate ep from Spck, then a
QKD protocol where Alice and Bob use the state Rwould
be as secure as a protocol where they use the state S.

Now observe that, as far as the estimation of ep is
concerned, since Bob performs individual measure-
ments on his oscillators, the action of Eve is the same
as if she were acting on each oscillator with individ-
ual maps #i : �! #i���, i � 1; . . . ; 2N � N0 , where #i
denotes the map obtained by restricting the whole map
T��R� to the ith oscillator and replacing the ith state
appearing in the tensor product R with �. Next, let M
denote a sufficiently large integer and suppose that Alice
and Bob had a means to estimate the quantities �j �
1
M �trP�pj�#2N�1��j� � . . .� trP�pj�#2N�M��j��, then the
quantity

� �
1

N

XN
j�1

�j (4)

would be as reliable an estimator for ep as the one Alice
and Bob would have obtained if they had used the state S.

Upon performing p-quadrature homodyne measure-
ments, Bob can determine the NK quantities

Fjk �
1

M
�trP�pj�#i1�k���k� � . . .� trP�pj�#iM�k���k��;

where Ik � fi1�k�; . . . ; iM�k�g is some subset of f2N �
1; . . . ; 2N � N0g. Because of the random permutation �,
we can be statistically confident that, for M sufficiently
large, the quantity Fjk does not depend on the particular
set Ik. In particular, we can be confident that Fjk tends to
1
M �trP�pj�#2N�1��k� � . . .� trP�pj�#2N�M��k�� with ar-
bitrarily high accuracy (taking M sufficiently large).

To conclude our conversion from a squeezed-state pro-
tocol to a coherent-state protocol, it remains to prove only
that the �j’s can be inferred from the Fjk, when the
coherent states �k are correctly chosen. First, in order
to simplify notations in the subsequent discussion, we
define an operator Ej (which depends on the #i ’s) by

trEj� �
1

M
�trP�pj�#2N�1��� � . . .� trP�pj�#2N�M����:

Thus we have Fjk � trEj�k and �j � trEj�j. Next, let
�j � j jih jj and let

P
n 

j
njni denote the expansion of

j ji in photon-number basis. Since
P
nj 

j
nj2 � 1, we have

8 ( > 0;9 Nj such that
P

1
n�Nj�1 j 

j
nj2 < (. Let N� �

maxjNj and let us denote j jN� i�
PN�

n�0 
j
njni and j j;cN� i �

j ji 	 j jN� i. We have jh jjEjj ji 	 h jN� jEjj 
j
N� ij< (�

2
���
(

p
. Indeed, 0 � Ej � 1 and the Cauchy-Schwarz in-

equality imply that h j;cN� jEjj 
j;c
N� i� jj j;cN� jj2<( and that
170502-3
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h jN� jEjj 
j;c
N� i�

���
(

p
. Thus the knowledge of h jN� jEjj 

j
N� i

brings (in arbitrarily good approximation) the knowledge
of h jjEjj ji. Also, the quantities h jN� jEjj 

j
N� i can be

inferred from the �N� � 1�2 quantities hk1jEjjk2i, 0 �

k1; k2 � N�. It thus remains to show only that these
quantities can be estimated with coherent states.
Therefore, consider the pseudomixture of coherent states

��n��r� �
Z d+

2�
ein+jrei+ihrei+j:

Using the number state expansion of coherent state jrei+i
[15], one immediately checks that

��n��r� � e	r
2
X1
l�0

r2l�n���������������������
l! �l� n�!

p jlihl� nj:

If a sufficiently large subset, A�r�, of states of
f�1; . . . ; �Kg are randomly distributed on a circle of radius
r in phase space, then the quantities

t r ��n��r�Ej � e	r
2
X1
l�0

r2l�n���������������������
l! �l� n�!

p hl� njEjjli (5)

can be estimated from the quantities Fjk, �k 2 A�r�,
with arbitrarily high accuracy when M and the size of
A�r� are sufficiently large. From Eq. (5), we find that

hL�njEjjLi�
er

2
tr��n��r�Ej	

PL	1
l�0

r2l�n�������������
l! �l�n�!

p hl�njEjjli

r2L�n

�
����������������������
L!�L�n�!

p
�O�r2�: (6)

That is, if the quantities hl� njEjjli, 0 � l � L	 1, are
known with high accuracy, then the quantity hL�

njEjjLi can also be known, with accuracy O�r2�. Thus
considering some sufficiently small value r0, the quantity
h0� njEjj0i can be inferred. Then considering r1 > r0,
one determines h1� njEjj1i, . . . , considering rL > . . .>
r0, one determines hL� njEjjLi. Of course, taking in-
creasing values of L, the errors will accumulate and the
choice of r0; . . . ; rL is a delicate problem. But since we
always consider a situation where L is finite, it should be
possible to choose the values of r0; . . . ; rL so as to control
the accumulated errors. It should be noted that the coher-
ent states used to estimate ep must be drawn from �ens, so
that Eve has no information on whether a coherent state
was used for the key or to estimate ep. This can, in
principle, be achieved by combining several distributions
such as those needed in the above estimation procedure,
and averaging the resulting ep’s.

In summary, we have studied the security of Gaussian-
modulated coherent-state protocols. We have shown how
to extend the protocol of [4] to remove the need of
squeezing for estimating the phase-error rate. This quan-
tity can be estimated using coherent states modulated in
two conjugate quadratures, homodyne measurements, and
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appropriate classical postprocessing. The equivalence be-
tween the derived coherent-state QKD protocol and an
EPR purification with CSS codes assesses the security
against any attack, going beyond individual Gaussian or
finite-size non-Gaussian attacks [7–9]. An interesting
question is the following: how robust is this coherent-
state protocol in a practical situation such as an attenu-
ation channel? Answering it amounts to estimating how
eb and ep vary with loss and with the amount of (virtual)
squeezing involved in the protocol. Duplicating the
analysis carried in [4], one finds that a key can be dis-
tilled if losses are below 0.4 dB. This value should not be
considered as a security threshold though, because it is
strongly related to the periodic encoding scheme used
here and in [4] to assign a bit value to a real number.
Methods to get more efficient coherent state protocols
will be presented in a forthcoming paper [16].
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