
B and multi-target document generation*

Gilles Van Assche

November , 

Abstract

B and B are open-source tools for converting mathematical expressions
written in the TEX syntax intoMathML. This article focuses on a particular use case, where the
source of a scientific document is written in XML and can be the input for a variety of output
formats, ranging from LATEX articles to documents in OpenDocument format to web pages.
We show that B can play a central role in such a context, where the author wishes to
enter equations in the TEX syntax and yet enable his document for publication not only with
TEX but also in MathML-based formats.

Typing a mathematical expression using the syntax of TEX is much more convenient than in
the MathML syntax. In fact, the latter was not designed to be typed by hand, but instead to be
entered in a MathML editor or converted from another format. Yet, MathML is being adopted
by an increasing number of programs and utilities, especially in browsers to display pages with
formulas on the Web. To be able to use MathML while retaining the convenience of the TEX
syntax, B provide a way to convert mathematical formulas from the syntax of TEX (or
a large subset of it) to MathML [].

B differs fromB in that it adds the ability to convert all TEX formulas in an XML
file to MathML. The idea behind this new functionality stems from a specific use case of B-
: the generation of documents in multiple formats from a single source []. This article
focuses on a particular use case, where a document is written in XML and becomes the source for
a variety of output formats, ranging from LATEX articles to documents in OpenDocument format
to web pages. This approach is not new—actually, it is a fairly natural one—yet this article points
out that B fits nicely in the picture when it comes to scientific documents and papers.

The rest of the paper is organized as follows. First, we give an overview of XML technologies for
scientific documents in Section . Then, Section  describes the functionality of B. The
single-source approach for scientific documents is the content of Section , including informa-
tion on B in Section ., XSLT in Section . and finally an example in Section ..

 XML technologies

The Extensible Markup Language, or XML, has become a popular way to express the content
and structure of a document []. XML defines a generic syntax for enriching texts (or data) with
humanly-readable tags. Alone, XML is hollow—it does not define the meaning of tags, nor how

*This article appears in The Zpravodaj of the Czechoslovak TEX Users Group []. The text of this article is licensed
under the Attribution-NoDerivs Creative Commons license.

 / 

http://creativecommons.org/licenses/by-nd/3.0/

B and multi-target document generation

to process anXMLdocument. Instead, it can be viewed as a common ground for applications that
share a single syntax and a lot of standard tools to generate, query, transform and edit data or
documents in a unified way. For instance, the Extensible Stylesheet Language Transformations
(XSLT) language is an efficient way to generate XML documents or to transform one XML file
into another [].

An XML application is a restriction of the XML syntax to a well-defined set of tags and other
conventions. Anyone is free to define his/her own XML application. As of interest for scientific
documents, there are at least three XML applications that are important to mention: XHTML,
theOpenDocument format andMathML. First, XHTML is an XML version of the famousHyper-
Text Markup Language (HTML) that describes the content of a web page []. Retro-compatible
with HTML, XHTML is a clean version of HTML that follows the XML syntax and consequently
allows to use all the XML tools. Second, the OpenDocument format uses a container format (as
a Zip file) that embeds XML files for the content and style information of the document []. Fi-
nally, MathML is an XML application that describesmathematical expressions []. It encodes the
structure of such expressions in a standard way, so that software can display or process them.

MathML is used for embedded formulas in several applications, including XHTML and Open-
Document. For instance, MathML formulas can be included in XHTML web pages. Tradition-
ally, mathematical expressions have been included as bitmap pictures—this is a solution with
many drawbacks (e.g., poor, non-scalable display quality, increased load time), but of course one
that works for all browsers. Formulas in MathML, on the contrary, provides a better alternative,
which is supported by an increasing number of software, including many recent browsers (e.g.,
Firefox [], Design Science’s MathPlayer plug-in [] for Microsoft Internet Explorer).

 B

While MathML is becoming a universal way to express and exchange mathematical expressions,
its syntax is extremely verbose, preventing the most courageous user from entering an equation
of reasonable size by hand in a text editor. In fact, it is not the purpose of MathML for one to be
able to actually type a formula in this syntax. Instead, there are interactive editors or converters
to do so.

Unlike MathML, the syntax of mathematical expressions in TEX is the de-facto standard in the
scientific community and is simple enough to be entered by hand. This is where B comes
into play: It allows one to enter formulas using the syntax of TEX and to convert them into
MathML.

B was written by David Harvey, who targeted his program to support equations in Me-
diaWiki, the engine behind Wikipedia []. In this context, writers enter text in a rather simple
syntax calledwiki text andMediaWiki generates the HTML code to be displayed in a browser. To
keep the syntax simple, writers are allowed to enter equations in the TEX syntax. Currently, texvc
converts the mathematical formulas of Wikipedia to either HTML or PNG bitmaps []. As an
alternative, a MediaWiki extension using B is able to convert each of these into MathML
[]. Like texvc, B processes each equation individually.

The syntax supported by B is a subset of the TEX syntax, but the chosen subset is large
enough for most purposes. For instance, it supports a long list of symbols, commands and envi-
ronments compatible with TEX, LATEX and AMS-LATEX, as well as macros via \newcommand. The
complete list can be found in the user manual [].

Internally, B processes everything as Unicode, from the Greek letters to mathematical
operators to text in languages other than English. As a convenient extension to the TEX syntax,

 / 

B and multi-target document generation

<blahtex>
<mathml>
<markup>
<msqrt>

<msup>
<mi>x</mi>
<mn>2</mn>

</msup>
<mo lspace=”0.222em” rspace=”0.222em”>+</mo>
<mi>α</mi>

</msqrt>
</markup>
</mathml>
</blahtex>

Figure : Sample MathML output provided by B

<blahtex>
<png>
<md5>068bd5f892d1f87b0371fa570af10712</md5>
</png>
</blahtex>

Figure : Sample PNG file name output

B accepts a number of mathematical symbols to be directly entered in Unicode as an alias
to the TEX command. E.g., B makes no difference between the multiplication sign “×”
entered as is and the \times command.

A nice thing about B is that it makes a good attempt at providing the same spacing be-
tween operators as TEX does. It determines the proper spacing and provides it in the generated
MathML code as lspace and rspace attributes. Although the rendering of MathML varies from
browser to browser, this helps getting a consistent look, as close as possible to TEX’s appearance.

We now illustrate the use of B through some examples.

The first way to use B, with the --mathml option, is to convert an equation given at
standard input into MathML at standard output. For instance, typing: echo ’\sqrt{x^2+\alpha}’
| blahtex --mathml produces the output in Figure . In this example, the MathML fragment
is enclosed in blahtex/mathml/markup. Note that the MathML fragment produced does not
contain any namespace information; ideally, the MathML namespace should be added when en-
closing this fragment in an actual XML file. In the case of a syntax error, explicit information is
given in a blahtex/error element.

The second way to use B, with the --png option, is to convert an equation into a PNG
file. B calls TEX to produce this bitmap picture. The name of the output file is auto-
matically generated from the MD digest of the TEX code. Hence, if the same formula appears
several times, only one PNG file is produced. To be able to determine the name of the PNG
file, the digest is provided in the blahtex/png/md5 element of the XML fragment at the stan-
dard output. For instance, typing echo ’\sqrt{x^2+\alpha}’ | blahtex --png produces the file
068bd5f892d1f87b0371fa570af10712.png displaying

√
x2 + α and the XML fragment of Fig-

ure .

 / 

B and multi-target document generation

<?xml version=”1.0”?>
<equations xmlns:b=”http://gva.noekeon.org/blahtexml”>
<equation b:inline=”x+y”/>
<equation b:block=”\exp(-\gamma x)”/>

</equations>

Figure : Sample input file for B

 Single-source approach for scientific documents

When writing a scientific document, the writer wishes to concentrate on the content and not
worry too much about the technical details of the typesetting system. The purpose of LATEX, as a
layer on top of TEX, is indeed to provide separation between content and presentation. However,
it does not forbid the writer to enter specific commands to control details of some presentation
aspects, as the need naturally arises in practice. Also, one often has a predetermined target in
mind for a document (e.g., an article for a specific journal, a report, a thesis) when writing it.
Having specific presentation requirements (e.g., the journal’s layout) is not a problem for a single
document. However, if one wishes to re-use material between various documents, a simple copy
& paste may not be enough: Some presentation-oriented commands need to be adapted as the
layout conventions for different targets may not be identical. For instance, different LATEX class
files may have slightly different syntaxes. To enter the abstract of an article, one may require
to enclose it in a \abstract command, while others require it in an environment delimited by
\begin{abstract} and \end{abstract}. As another example, the highest heading level of an article
is \section, while it is \chapter for a report. Moving a section to another document or to another
level may require adapting all the heading commands.

Presentation-oriented commands may become even more problematic when the output format
is not LATEX’s original target (i.e., a Postscript or PDF file) but, say, a web page. It would be exces-
sive for a converter from LATEX to HTML to support all the presentation-oriented aspects of the
document. At least some of them do not make sense at all, such as the page format, whilst others
might just be very difficult to convert.

While there is nomiracle solution to these problems, we think that the best solution is to generate
different output formats from a source file in a common syntax. The common syntax may or
may not be related to one of the output formats. The point is, however, that the common syntax
should focus on the content and that, if necessary, some common presentation aspects can be
added to it, provided that it does not privilege or exclude one of the output formats specifically.

. Using B

The idea of a common syntax naturally extends to themathematical expressions, which can then
be converted into an appropriate set of formats, depending on the target output format. This is
where B comes into play. Assuming a document written in a syntax based on XML,
B converts each equation found in the document into either MathML, nominal TEX
syntax, PNG bitmap image files, or all three formats. The syntax of B is indeed TEX-
oriented. Yet, the subset supported by B excludes TEX-specific presentation aspects
that could not be converted into MathML.

B provides the --xmlin option, which does not exist in B. With this option,
B processes an input file given at standard input. Such an input file may look like the
example of Figure . The equations are given as attributes (inline or block) in the B

 / 

B and multi-target document generation

<?xml version=”1.0” encoding=”UTF-8”?>
<equations xmlns:b=”http://gva.noekeon.org/blahtexml”>
<equation>
<math xmlns=”http://www.w3.org/1998/Math/MathML”>
<mi>x</mi>
<mo lspace=”0.222em” rspace=”0.222em”>+</mo>
<mi>y</mi>

</math>
</equation>
<equation>
<math xmlns=”http://www.w3.org/1998/Math/MathML” display=”block”>
<mi>exp</mi>
<mo lspace=”0” rspace=”0” stretchy=”false”>(</mo>
<mo lspace=”0” rspace=”0”>-</mo>
<mi>γ</mi>
<mspace width=”0”></mspace>
<mi>x</mi>
<mo lspace=”0” rspace=”0” stretchy=”false”>)</mo>

</math>
</equation>

</equations>

Figure : The output file given by B for the input file in Figure 

namespace. Whenever B meets such an equation, it expands it into the equivalent
MathML code. The corresponding output is given in Figure . Note that by using a namespace,
attributes containing equations can be added to any XML file independently of the syntax of
other applications.

In addition to the MathML representation of the equations, the --annotate-TeX and --annota-
te-PNG options cause B to produces an annotation element with the equation in
nominal TEX syntax and another annotation element with the name of the PNG file contain-
ing a bitmap rendering. The generated MathML code and both new elements are enclosed in a
semantics element, to conform to the MathML syntax. From the same example as above, this
would generate the output of Figure .

. Using XSLT

In document generation from a source in a common syntax, the source file of a document must
be parsed before contents in the target format can be generated. Restricting the common syntax
to an XML application, parsing XML can be done with various tools or can be programmed in
different languages with appropriate libraries. Among the available tools, the XSLT language is
particularly well suited for transforming an XML source file into either another XML file or a text
file. Let us briefly introduce this tool and explain why it is well suited to our particular use case.

In XSLT, a stylesheet defines a transformation from XML into either XML or text. In its simplest
form, it is a declarative language that specifies the piece of text or XML data to generate when
it encounters a given XML tag in the source file. To apply a given stylesheet to a source file, one
uses an XSLT processor.

XSLT can become a bit complex when the task to perform diverges from its core abilities. How-
ever, in the context ofmulti-target document generation, XSLT is simple to program and to read.

 / 

B and multi-target document generation

<equations xmlns:b=”http://gva.noekeon.org/blahtexml”>
<equation>
<math xmlns=”http://www.w3.org/1998/Math/MathML”>
<semantics>
<mrow>[…]</mrow>
<annotation encoding=”TeX”>x + y</annotation>
<annotation encoding=”image-file-PNG”>

./f05c46190061a618fd432bf5471cc2ab.png</annotation>
</semantics>

</math>
</equation>
<equation>
<math xmlns=”http://www.w3.org/1998/Math/MathML” display=”block”>
<semantics>
<mrow>[…]</mrow>
<annotation encoding=”TeX”>\exp (- \gamma x)</annotation>
<annotation encoding=”image-file-PNG”>

./df6bfcabef19b8a0ccdbd2077ae96e75.png</annotation>
</semantics>

</math>
</equation>

</equations>

Figure : The output file given by B for the input file in Figure  when additional an-
notations are requested

<xsl:template match=”b”>
<xsl:text>\textbf{</xsl:text>
<xsl:apply-templates/>
</xsl:text>}</xsl:text>

</xsl:template>

Figure : Example of XSLT code to convert the bold b tag of XHTML to the textbf command in
LATEX

For instance, no explicit loopsneed to bewritten to go through the entire sourcefile, as such loops
are managed by the XSLT processor automatically. This reduces the work to writing the text or
XML fragment to be generated corresponding to a given input XML element.

As a brief example, let us consider the conversion fromXHTML toLATEXusingXSLT. TheXHTML
tag b indicates bold text. The equivalent LATEX command would be \textbf. The piece of code in
Figure  makes this conversion: It declares a template, which matches b tags. For all such tags,
it then tells to output \textbf{, then to apply recursively other templates, e.g., to convert other
tags or simply to write the text inside the b tag, and finally it concludes by outputting the closing
brace }.

. A simple example based on XML

On the B web page, we provide an example of document generation system based on
an XML syntax []. This is a working example, although with a reasonably simple functionality.
The goal is not to rival with well-known systems, such as DocBook [], with its definition of

 / 

B and multi-target document generation

.ed

Blahtexml and XSLT stylesheet

.ed+mathml

XSLT stylesheets

LaTeX formats HTML formats ODF content

(Xe)LaTeX

.pdf

Zip

.odt.xml

Figure : The general flow

almost  different tags. Instead, this working example proposes a clean and simple syntax,
whose only ambition is to illustrate the use of B for multi-target document generation
in the scope of scientific documents and articles.

The proposed example is based only on open-source technologies: The general process is man-
aged bymake and the XSLT processing is performed by any XSLT processor. In the example, the
processor used is xsltproc [], although any XSLT processor could be used.

Let us briefly describe the syntax of the source file and then the process from the source file to
a target output. The source file is a document in XML, which contains the text, the structure of
the document and somemeta-information. The input syntax is illustrated in the file Sample.ed,
which contains some sample text and mathematical expressions. The root element of the XML
file is document. In it, two child elements appear: head and body. In the former, information
about the author(s), their affiliation and the title can be provided. The latter provides the contents
and structure of the document.

The structure of the file was inspired from XHTML .. Text paragraphs can be grouped in sec-
tions using the section element. Such sections can benested, whichmean they actually represent
a chapter, a section or a subsection depending on the nesting depth. Section titles are provided
in h elements. Text paragraphs are enclosed in p elements, and ordered and unordered lists in
ol and ul, respectively, with each list item in li. Inside paragraphs or list items, plain text can be
given. The text can be further formatted using emphasis (italic, em), a strong font (bold, strong),
small capitals (sc), subscript (sub) and superscript (sup).

As of interest for B specifically, inline mathematical expressions are written in ieq el-
ements, and stand-alone formulas in eq elements. Inside such elements, the formula is given in
B format.

The general processing flow is illustrate in Figure . To determine the sequence of steps from
the source file to the output file, a makefile is provided. Depending on the target format, the
following steps can be taken.

• As a themathematical expressions are not written as attributes (butmore simply inside ieq
and eq elements), a first step consists in putting the equations in the appropriate attributes
for B. This preparation step is performed by the PrepareForBlahtexml.xsl XSLT

 / 

B and multi-target document generation

stylesheet.

• As a result of the previous step, the mathematical expressions are written as attributes
in the B namespace. This step now consists in converting these formulas using
Bwith the --annotate-TeX and --annotate-PNG options. As a result, all formu-
las are in three formats: MathML, TEX and as PNG files. Depending on the desired output
format, the following steps will extract the format they need.

• Then, the XSLT stylesheetsNumbering.xsl and Referencing.xsl process the resulting file
to number sections and to resolve cross-references. This step is mainly done for XHTML
output, as LATEX and OpenDocument formats have their own syntax to express numbered
sections and references.

• The core of the output generation is performed by a format-specific XSLT stylesheet to pro-
duce XHTML, LATEX or OpenDocument code. More details on the various output formats
are given below.

• Optionally, a last step finalizes the production and again depends on the desired output
format. For instance, for a .tex file, LATEX (or X ELATEX) is invoked to produce a PDF file. If
the target format is OpenDocument, then the resulting XML file is packaged into a Zip file
and renamed as .odt.

Let us give some more details about the generation of the possible output formats. To allow
make to determine which sequence of operations to perform, the different output formats have
specific extensions. For instance, to produce a PDF file from Sample.ed via LATEX using an IEEE
class file, one has to typemake Sample.ieee.latex.pdf. Wewill see the other extensions as we go.

For XHTML, the generation of the various tags is fairly straightforward, since to an element
of our input syntax corresponds an element in XHTML. This part of the job is done by the
ToXHTML-common.xsl stylesheet. Details about the display styles can be tuned via the docu-
ment.css cascaded stylesheet. There are three flavors of XHTML output formats, depending on
the way the mathematical expressions are handled.

• For equations inMathML, the extension is .xhtmlmathml.xml (e.g.,make Sample.xhtml-
mathml.xml).

• As a first alternate option for browsers that have no MathML support, the mathematical
expressions can be displayed as bitmap pictures, using the PNG files produced earlier. For
this, the extension is .xhtmlpng.xml.

• As a second alternate option, the mathematical expressions can be displayed with pure
HTML tags, but in a rather approximate form. For instance, HTML can display text in
superscript and subscripts, but if an expression (like Asup

sub) requires both then the HTML

code will not be able to put one above the other (e.g., the result might look like A sup
sub).

Other restrictions apply, for instance, for two-dimensional constructions such as matri-
ces or fractions. Nevertheless, this option may be useful and sufficient if the formulas are
simple. Here, the extension is .xhtmlapprox.xml.

For TEX and derivatives, there are also several flavors. In the provided example, the output is
either LATEX-oriented or X ELATEX-oriented. The latter has the advantage of an easy support of True
Type and Open Type fonts. Here the XSLT stylesheet must output a text file that follows TEX’s
syntax conventions. The main part of the job is done by the ToLaTeX-common.xsl stylesheet.
Then, a number of smaller XSLT stylesheets give specific generation rules, most notably a specific
header, for each flavor. The flavors supported in this example are the following.

 / 

B and multi-target document generation

• For a simple article in LATEX, the specific stylesheet is ToLaTeX-article.xsl and the exten-
sion is .article.latex.tex (e.g., make Sample.article.latex.tex) for the .tex source file. To
get the result directly as a PDF file, the .tex extension can be replaced by .pdf (e.g., make
Sample.article.latex.pdf).

• For an article following the APS Physical Review conventions and using the revtex4-1 class
file, the stylesheet is ToLaTeX-revtex.xsl and the extension is .revtex.latex.tex.

• For an article using the IEEEtran class file for the IEEETransactions journals, the stylesheet
is ToLaTeX-ieee.xsl and the extension is .ieee.latex.tex.

• For a simple article in X ELATEX, the stylesheet is ToXeLaTeX-article.xsl and the extension is
.article.xelatex.tex.

Adding a new flavor tailored to special needs is rather simple, as it suffices to add a new rule in
themakefile and a new XSLT stylesheet based on one of the models above. Most of the specific
stylesheets just define an alternate LATEX file header.

Finally, for OpenDocument format, most of the job is done by the ToODT.xsl stylesheet. It
produces a file called content.xml, which is then Zipped, together with the files provided in
ODT-Template/, to make a .odt file. Here the target extension is simply .odt (e.g., make Sam-
ple.odt). Details about the display styles can be tuned in theODT-Template/styles.xml file. The
.odt file can be opened by any word processor supporting the standard OpenDocument format¹.

 Conclusions

B can be useful for converting mathematical expressions written in the TEX syntax
into MathML. In particular, we have shown that B can perform this task in the scope
of a multi-target document generation system for scientific documents. We have given an exam-
ple to illustrate this purpose, where a document is written in a common XML-based syntax and
various output formats can be generated from it, including various flavors of LATEX.

Although fully working, the example given is rather simple from a functionality point of view.
In this respect, future work may include the support for tables, figures, bibliographic entries and
more output formats.

References

[] G. Van Assche, ExampleDoc, http://gva.noekeon.org/blahtexml/exampledoc.

[] , Blahtexml andmulti-target document generation, TheZpravodaj of theCzechoslovak
TEX Users Group (), no. , , http://bulletin.cstug.cz/.

[] World Wide Web Consortium, Extensible markup language (XML), http://www.w3.org/
standards/xml/.

[] , Extensible stylesheet language transformation (XSLT), http://www.w3.org/
standards/xml/transformation.

¹At this time of writing, a bug in OpenOffice.org prevents the mathematical expressions from being displayed with a
correct size after loading the document []. A possible workaround consists in double-clicking on the equations to open
them in the integrated equation editor, which forces OpenOffice.org to resize the mathematical expressions appropri-
ately. We hope this issue will be solved soon.

 / 

http://gva.noekeon.org/blahtexml/exampledoc
http://bulletin.cstug.cz/
http://www.w3.org/standards/xml/
http://www.w3.org/standards/xml/
http://www.w3.org/standards/xml/transformation
http://www.w3.org/standards/xml/transformation

B and multi-target document generation

[] ,HTML & CSS, http://www.w3.org/standards/webdesign/htmlcss.

[] , Mathematical markup language (MathML), http://www.w3.org/standards/
webdesign/math.

[] Organization for the Advancement of Structured Information Standards, Open document
format for office applications (OpenDocument), http://www.oasis-open.org/committees/
tc_home.php?wg_abbrev=office.

[] Wikimedia Foundation,MediaWiki, http://www.mediawiki.org/.

[] D.Harvey andG.VanAssche,Blahtex and blahtexml version .manual,http://gva.noekeon.
org/blahtexml/.

[] Mediawiki, Extension:Blahtex, http://www.mediawiki.org/wiki/Extension:Blahtex.

[] Mozilla, Firefox, http://www.firefox.com.

[] OpenOffice.org, Issue , http://www.openoffice.org/issues/show_bug.cgi?id=
91779.

[] Design Science,MathPlayer plug-in, http://www.dessci.com/en/products/mathplayer/.

[] D. Veillard, The xsltproc tool, http://xmlsoft.org/XSLT/xsltproc2.html.

[] N. Walsh, DocBook : The definitive guide, O’Reilly, .

[] T. Wegrzanowski, Texvc, http://en.wikipedia.org/wiki/Texvc.

[] Wikipedia, Single source publishing, http://en.wikipedia.org/wiki/Single_source_
publishing.

 / 

http://www.w3.org/standards/webdesign/htmlcss
http://www.w3.org/standards/webdesign/math
http://www.w3.org/standards/webdesign/math
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=office
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=office
http://www.mediawiki.org/
http://gva.noekeon.org/blahtexml/
http://gva.noekeon.org/blahtexml/
http://www.mediawiki.org/wiki/Extension:Blahtex
http://www.firefox.com
http://www.openoffice.org/issues/show_bug.cgi?id=91779
http://www.openoffice.org/issues/show_bug.cgi?id=91779
http://www.dessci.com/en/products/mathplayer/
http://xmlsoft.org/XSLT/xsltproc2.html
http://en.wikipedia.org/wiki/Texvc
http://en.wikipedia.org/wiki/Single_source_publishing
http://en.wikipedia.org/wiki/Single_source_publishing

	XML technologies
	Blahtex
	Single-source approach for scientific documents
	Using Blahtexml
	Using XSLT
	A simple example based on XML

	Conclusions

