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Abstract
In this short note, we apply a rotational distinguisher to the keyed permu-

tation of the SHA-3 candidate Shabal. We then discuss its applicability in the
scope of Shabal’s mode of operation and its impact on the security proofs.

The SHA-3 candidate Shabal uses its own mode of operation relying on a keyed
permutation [3]. The keyed permutation, denoted 𝒫, takes as input 𝑀 ∈ ℤ512

2 ,
𝐴 ∈ ℤ384

2 , 𝐵 ∈ ℤ512
2 and 𝐶 ∈ ℤ512

2 , and outputs 𝐴′ ∈ ℤ384
2 and 𝐵′ ∈ ℤ512

2 . When 𝑀
and 𝐶 are fixed, 𝒫𝑀,𝐶 is a permutation in the inputs 𝐴 and 𝐵. The inputs 𝑀 , 𝐴,
𝐵 and 𝐶 can also be viewed as 16 (or 12 for 𝐴) words of 32 bits each. Inside 𝒫, the
following operations are used: bitwise exclusive or (XOR), bitwise and, cyclic shift on
32 bits (also called rotations and denoted ≪), addition modulo 232 and multiplication
by 3 and 5 modulo 232.

Rotational cryptanalysis is similar to differential cryptanalysis. Instead of apply-
ing the function under test with pairs of inputs with a given difference (e.g., (𝑎, 𝑎⊕Δ)
for a fixed Δ), the idea is to relate the two members of a pair with a rotation (see [6]
and the references therein). In the sequel, we are interested in pairs of input (𝑋,𝑋 ′)
such that all the 32-bit words of 𝑋 are cyclically shifted by one position to the left,
i.e., 𝑋 ′[𝑖] = 𝑋[𝑖] ≪ 1, for all 𝑖, where 𝑋[𝑖] is a 32-bit word of 𝑋. To make the notation
shorter, one can write 𝑋 ′ = 𝑋 ≪ 1.

1 Distinguisher on Shabal’s keyed permutation 𝒫
Most of the operations used by 𝒫 preserve the rotation: the bitwise operations and
the rotation operation itself. For the additions modulo 232, conditions on the values of
𝑋 and 𝑌 can be set such that (𝑋 ≪ 1)+ (𝑌 ≪ 1) = (𝑋+𝑌 ) ≪ 1. From a statistical
point of view, the probability that (𝑋 ≪ 1) + (𝑌 ≪ 1) = (𝑋 + 𝑌 ) ≪ 1 is about
2−1.415 when 𝑋 and 𝑌 are drawn uniformly from ℤ32

2 [6, 5]. For the multiplications
by 3 and 5, there are also conditions on the value of the operand such that the rotation
is preserved. We have found that:

Pr[3(𝑋 ≪ 1) mod 232 = (3𝑋 mod 232) ≪ 1] =
232 − 1

3× 232
≈ 1

3
≈ 2−1.585, and

Pr[5(𝑋 ≪ 1) mod 232 = (5𝑋 mod 232) ≪ 1] =
3× 232 − 8

10× 232
≈ 3

10
≈ 2−1.737,

where 𝑋 is drawn uniformly from ℤ32
2 .

It follows that, with some probability, the output of 𝒫(𝑀 ≪ 1, 𝐴 ≪ 1, 𝐵 ≪
1, 𝐶 ≪ 1) is equal to 𝒫(𝑀,𝐴,𝐵,𝐶) ≪ 1. In 𝒫, there are 48 applications of the mul-
tiplication by 3, 48 applications of the multiplication by 5 and 36 modular additions.
The probability that a rotated pair survives up to the output of 𝒫 is thus about
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2−(48×1.585+48×1.737+36×1.415) = 2−210. With an ideal keyed permutation of the same
size, the probability would be 2−(384+512).

This is a straightforward application of the rotational cryptanalysis, where the
inputs 𝑀 , 𝐴, 𝐵 and 𝐶 are chosen arbitrarily. Further analysis can be used to increase
the probability of getting a rotated pair at the output. Specific conditions on the
words can be written such that the multiplication preserves the rotation. One can
use the degrees of freedom in 𝐶 and in 𝑀 to satisfy these conditions directly instead
of relying on randomly drawn values.

A multiplication by 5 is applied to a word of 𝐴 directly. When updating a word of
𝐴, a word of 𝑀 is XORed. Hence, we can set the value of 𝑀 such that the updated
word satisfies the conditions to preserve rotation through ×5. Similarly, a word of 𝐶
is XORed just before multiplying by 3. Hence, it can be used such that the resulting
word satisfies the conditions for ×3. This allows us to save 12 multiplications by 3 and
12 by 5, increasing the probability to about 2−(36×1.585+36×1.737+36×1.415) = 2−171.

Tracking the dependencies between words further to satisfy more conditions can
be part of future research and may increase the probability. Using the degrees of
freedom in 𝐴 and 𝐵 is also possible.

Hence, this shows that one can distinguish 𝒫 from an ideal keyed permutation of
the same size with about 2171 queries. Note that there currently exist distinguishers
requiring much less queries, based on different techniques [1, 7, 2].

1.1 A variant with 𝐴 = 𝐶 = 0 and 𝐵 = 𝑀

We note that a variant of the distinguisher can be applied when, at the input of 𝒫,
the words of 𝐴 and 𝐶 are set to zero and the words of 𝐵 and 𝑀 are equal. This
variant will be used in the sequel.

Here, we consider pairs (𝑀,𝑀 ≪ 1) and check whether the 512-bit 𝐵-part of
output, i.e., 𝐵′ in (𝐴′, 𝐵′) = 𝒫(𝑀,𝐴,𝐵,𝐶), preserves the rotation. Since 𝐵′ does
not depend on the modular additions (and 𝐶 = 0 anyway), we do not need to con-
sider them. Hence, the probability that 𝒫 preserves the rotation in 𝐵′ is about
2−(48×1.585+48×1.737) = 2−159.

2 Applicability to Shabal’s mode of operation
Shabal’s mode of operation is shown to be indifferentiable from a random oracle (up to
a given probability) if the keyed permutation 𝒫 is an ideal keyed permutation or not
too far from it [3, 4]. The mode of operation is parameterized, among other things, by
the initialization vector (IV) and by the number of final rounds. The indifferentiability
bound does not depend on these two parameters. Furthermore, Shabal uses a counter
on each block but the indifferentiability proofs do not require it. In fact, the theorem
in [4] explicitly considers the case where there are no counters and no final rounds.

Hence, we can use a minimal instance of Shabal’s mode of operation with IV
𝐴 = 𝐵 = 𝐶 = 0, no final rounds and no counter. Note that this differs from
the Shabal hash function itself, which uses a specific set of IVs (for different output
lengths), has three final rounds and uses block counters.

We can build a distinguisher on a hash function (again, not Shabal itself) that
uses Shabal’s mode of operation in a minimal way and Shabal’s keyed permutation
𝒫. Let us build pairs of messages (𝑚,𝑚′), 𝑚,𝑚′ ∈ ℤ∗

2, such that they span only one
block and such that 𝑀 and 𝑀 ′ after padding make a rotated pair, i.e., 𝑀 ′ = 𝑀 ≪ 1.
In this instance of the mode of operation, 𝐴, 𝐵, 𝐶 are initialized to 0 and 𝑀 is added
wordwise to 𝐵, giving 𝐵 = 𝑀 at the input of 𝒫. After the application of 𝒫, the
output is extracted from the 𝐵-part of the output. Hence, the variant presented in
Section 1.1 above can be translated into a distinguisher against this specific instance.
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2.1 Discussion
The mode of operation of Shabal was proven to be indifferentiable even if 𝒫 differs
from an ideal keyed permutation up to a given bias [4]. In the theorem, the keyed
permutation can have fixed known relations between its input and output, which
always hold. It may be possible that this result can be adapted to a keyed permutation
that has relations satisfied only probabilistically but, at this point, the distinguisher
of Section 1 falls outside of the scope covered by the proof in [4].

In addition, Section 2 shows a distinguisher on a hash function using 𝒫 and a
mode of operation proven indifferentiable. This implies that 𝒫 is not strong enough
to be used with such a mode of operation in a secure way.

The distinguisher presented here cannot be applied on the Shabal hash function
for three reasons. First, Shabal has a non-symmetric IV, which makes it harder to
preserve the rotation. Second, the addition of a block counter does not preserve
the rotation. And third, Shabal has final rounds, which decrease the probability of
preserving rotated pairs.

3 Conclusion
We have shown a distinguisher on the keyed permutation of Shabal, applying the
rotational cryptanalysis in a fairly straightforward way. We have then applied a
variant of this distinguisher to a hash function using Shabal’s keyed permutation and
an instance of Shabal’s mode of operation satisfying the indifferentiability proofs.

Although the distinguisher is not applicable on Shabal at this point, it bypasses
Shabal’s current security proofs. In conclusion, the security of Shabal relies on features
not required by these security proofs, namely the non-symmetric initialization vectors,
the block counters or the final rounds.
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